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Chapter 1

About

Welcome to the online “book” for the second-year IBA course Statistics 2. This
book accompanies the content covered in the lectures. On Canvas, I will post
which chapters/slides we will cover in each lecture.

In this course we cover estimation and inference in both the simple and multiple
linear regression models. We provide foundations in theory and do many prac-
tical examples with real data. For these practical examples we will using the
R programming language in RStudio. This follows on from the first-year IBA
course Programming and Quantitative Skills that introduced you to R. You
may find it helpful to read through the online book of that course here as a
referesher.

As this book is new, it is likely that it will be edited throughout the semester.

1
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Chapter 2

Visualizing the Relationship
between Two Variables

Consider a business that is interested in the relationship between the amount it
spends on advertising and its sales revenue. This relationship is very important
for the business, because if advertising is not very effective at generating more
sales, the business could save a lot of money by reducing its advertising.

The business has data on the advertising spending and sales in different media
markets (i.e. locations with different TV, radio stations and newspapers) where
it sells its products. For example, in New York the business spends $3m on ad-
vertising and has revenues of $40m. In Los Angeles it spends $4m on advertising
and has revenues of $45m.

In this chapter we will learn how this business can visually assess the relationship
between advertising and sales.

In subsequent chapters, we will learn how this business can quantify this rela-
tionship, estimate the impact of advertising on sales, and predict the sales at
different advertising levels.

Before we look at an example of real data on advertising and sales, we will first
discuss the topic more generally.

2.1 Visualizing a Single Variable
With data on a single variable 𝑥, we often visually inspect the data using his-
tograms:

# Set seed to get the same random draws each time:
set.seed(30211)
# Generate 100 random observations from the uniform distribution:

3

https://en.wikipedia.org/wiki/Media_market
https://en.wikipedia.org/wiki/Media_market
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df <- data.frame(x = runif(100, 0, 1))
# Load the ggplot2 package:
library(ggplot2)
# Create a histogram of the data using ggplot:
ggplot(df, aes(x)) +
geom_histogram(bins = 10) +
xlab("X") +
ylab("Count") +
theme_minimal()

0
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0.00 0.25 0.50 0.75 1.00
X
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nt

A histogram can tell us about the distribution of a single variable, such as:

• The center of the distribution, i.e. median (here roughly 0.5).
• The range of the data (here 0 and 1).
• The spread of the distribution (here roughly uniformly spread over the

range).

2.2 Scatter Plots
With data on two variables 𝑥 and 𝑦, we use scatter plots to inspect the relation-
ship. A scatter plot has a dot for each data point (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1, … , 𝑛 on a
Cartesian plane.

df <- data.frame(x = runif(100, 0, 1))
df$y <- df$x + runif(100, -0.1, 0.1)
ggplot(df, aes(x, y)) +
geom_point(size = 1) +
theme_minimal()
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2.3 Positive Relationship

Examining the above scatter plot we notice that:

• When 𝑥 is high, 𝑦 is usualy also high.
• When 𝑥 is low, 𝑦 is usually also low.

In this case, we say that 𝑥 and 𝑦 are positively linearly related.

If we draw a line through the cloud of points, the line has a positive slope:

ggplot(df, aes(x, y)) +
geom_point(size = 0.5) +
geom_smooth(formula = y ~ x, method = "lm", se = FALSE) +
theme_minimal()
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If 𝑥 was advertising and 𝑦 was sales, the business observes that it tends to sell
more in markets where it advertises more. Therefore advertising may have a
positive impact on sales (whether advertising has a causal impact on sales is
something we will discuss later).

2.4 Negative Relationship

Suppose the scatter plot instead looked like this:

df$y <- 1 + -df$x + runif(100, -0.1, 0.1)
ggplot(df, aes(x, y)) +
geom_point(size = 0.5) +
geom_smooth(formula = y ~ x, method = 'lm', se = FALSE) +
theme_minimal()
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In this case:

• When 𝑥 is high, 𝑦 is usualy low.
• When 𝑥 is low, 𝑦 is usually high.

In this case, we say that 𝑥 and 𝑦 are negatively linearly related. The line through
the cloud of points has a negative slope.

If 𝑥 was advertising and 𝑦 was sales, the business may conclude that advertising
could be harmful to sales.

2.5 No Relationship
Two variables don’t always have to have a positive or negative relationship.
Sometimes there is no clear relationship between variables. In this case, we say
that 𝑥 and 𝑦 are unrelated.

Here is an example scatter plot of two variables that are unrelated:

set.seed(231)
df$y <- 1 + runif(100, -0.1, 0.1)
ggplot(df, aes(x, y)) +
geom_point(size = 0.5) +
scale_y_continuous(limits = c(0.9, 1.1)) +
theme_minimal()
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If we were to draw a line through the cloud of points it would be (almost) flat.

2.6 R Example
We will now learn how to make a scatter plot with a dataset using R. For this we
will use this dataset which was downloaded from kaggle.com, which is a website
with many datasets used by data scientists. The dataset contains the advertising
expenditure across TV, radio and newspapers (measured in thousands of dollars)
and sales revenue (measured in millions of dollars) for a company in different
media markets.

Following these steps:

• Create a folder on your computer that you will use for datasets and R
Scripts for this course (if you don’t have one already).

• Download the dataset here.
• Put the advertising-sales.csv file you downloaded into your folder for

this course.
• Open RStudio and create a new “Project”. Select “Use Existing Directory”

and navigate to your folder for this course.
• Then create an R Script in RStudio and paste in and run the following

code:

library(ggplot2)
df <- read.csv("advertising-sales.csv")
ggplot(df, aes(advertising, sales)) + geom_point()

https://walshc.github.io/stats2/advertising-sales.csv
https://www.kaggle.com/
https://walshc.github.io/stats2/advertising-sales.csv
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We can see that advertising and sales are positively related.

We can also customize the plot, changing the axis labels and adding a line
through the points:

ggplot(df, aes(advertising, sales)) +
geom_point() +
geom_smooth(formula = y ~ x, method = "lm", se = FALSE) +
xlab("Advertising expenditure (in $1,000)") +
ylab("Sales revenue (in $m)") +
theme_minimal()
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The command creating the blue line through the points is geom_smooth(formula
= y ~ x, method = "lm", se = FALSE). We will learn more about this com-
mand when we study the simple linear regression model.

2.7 Relationship Strength

Sometimes the relationship between 𝑥 and 𝑦 is stronger than with other pairs
of variables. For example, the relationship between 𝑥 and 𝑦 is stronger in the
left figure compared to the right figure:

library(gridExtra)
df <- data.frame(x = runif(100, 0, 1))
df$y1 <- df$x + runif(100, -0.3, 0.3)
df$y2 <- df$x + runif(100, -0.05, 0.05)
g1 <- ggplot(df, aes(x, y2)) + geom_point(size = 0.5) +
theme_minimal() + scale_y_continuous(limits = c(-0.3, 1.3)) + ylab('y')
g2 <- ggplot(df, aes(x, y1)) + geom_point(size = 0.5) +
theme_minimal() + scale_y_continuous(limits = c(-0.3, 1.3)) + ylab('y')
grid.arrange(g1, g2, nrow = 1)
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What we would like to do is to be able to measure the strength of the linear
relationship between 𝑥 and 𝑦. That is what we will do in the next chapter.
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Chapter 3

Covariance

In this chapter we will learn about one way to quantify the strength of a linear
relationship: the covariance.

Because the covariance is a very important measure we repeatedly use through-
out this course, we will first motivate where the formula comes from, and then
show how to calculate it in R.

3.1 Notation
We first define some notation. We observe a sample with 𝑛 observations for the
variables 𝑥 and 𝑦:

((𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛))
We will often refer to one specific observation as (𝑥𝑖, 𝑦𝑖). The sample means of
𝑥 and 𝑦 are given by:

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 and ̄𝑦 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖

The ∑𝑛
𝑖=1 term is mathematical notation for “take the sum over 𝑖 from 1 to 𝑛”.

It is defined as: 𝑛
∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

3.2 Quadrants
Consider again two variables 𝑥 and 𝑦 that have a positive linear relationship. I
plot them below, adding a vertical line at ̄𝑥 and a horizontal line at ̄𝑦:

13
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library(ggplot2)
set.seed(345345)
df <- data.frame(x = runif(100, 0, 1))
df$y <- df$x + runif(100, -0.1, 0.1)
ggplot(df, aes(x, y)) + geom_point(size = 0.5) +
theme_minimal() +
geom_vline(xintercept = mean(df$x), color = 'black', linetype = 'longdash') +
geom_hline(yintercept = mean(df$y), color = 'black', linetype = 'longdash')

0.0

0.4

0.8

0.00 0.25 0.50 0.75 1.00
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What we can see is that most of the data points are in the top-right and bottom-
left quadrants. Only a few points are in the top-left or bottom-right quadrants.

Now consider two variables that have a negative linear relationship:

df <- data.frame(x = runif(100, 0, 1))
df$y <- 1 - df$x + runif(100, -0.1, 0.1)
ggplot(df, aes(x, y)) + geom_point(size = 0.5) +
theme_minimal() +
geom_vline(xintercept = mean(df$x), color = 'black', linetype = 'longdash') +
geom_hline(yintercept = mean(df$y), color = 'black', linetype = 'longdash')
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What we can see here is that most of the data points are in the top-left and
bottom-right quadrants. Only a few points are in the top-right or bottom-left
quadrants.

From this we can conclude is that:

• If most of the data points are in top right-and bottom-left quadrants, we
have a positive linear relationship.

• If most of the data points are in top left-and bottom-right quadrants, we
have a negative linear relationship.

What we want to do with this is create a formula that captures how often we are
in the top-right and bottom-left versus the top-left and bottom-right quadrants.

3.3 Towards a Formula for the Covariance: In-
tuition

• If an observation 𝑥𝑖 is to the right of the line, then 𝑥𝑖 − ̄𝑥 > 0.
• If an observation 𝑥𝑖 is to the left of the line, then 𝑥𝑖 − ̄𝑥 < 0.
• If an observation 𝑦𝑖 is above the line, then 𝑦𝑖 − ̄𝑦 > 0.
• If an observation 𝑦𝑖 is below the line, then 𝑦𝑖 − ̄𝑦 < 0.

Taken together, in each quadrant it holds that:

Left Right
Top (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) < 0 (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) > 0

Bottom (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) > 0 (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) < 0

We call (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) the product of 𝑥𝑖 and 𝑦𝑖’s deviation from their means.
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If there is a positive relationship, then most points will be in the top-right
and bottom-left quadrants, so (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) will be positive for most of the
observations, but could be negative for some observations. But there will be
more positive terms overall and so when we sum over all observations we get:

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) > 0

If there is a negative relationship, then most points will be in the top-left and
bottom-right quadrants. So (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) will be negative for most of the
observations, but could be positive for some observations. But there will be
more negative terms overall and so when we sum over all observations we get:

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) < 0

Thus whether the sum ∑𝑛
𝑖=1 (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) is positive or negative can tell us

if there is a positive or a negative relationship between 𝑥 and 𝑦.

3.4 Covariance Formula
The formal definition of the covariance is as follows. For two random variables
𝑋 and 𝑌 , the covariance 𝜎𝑋,𝑌 is given by:

𝜎𝑋,𝑌 = 𝔼 [(𝑋 − 𝔼 [𝑋]) (𝑌 − 𝔼 [𝑌 ])]
where 𝔼 [𝑋] is the expected value of 𝑋. In words, the covariance between two
random variables is the expectation of the product of each variable’s deviation
from their expected values.

With data ((𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)), we can estimate cov (𝑋, 𝑌 ) using the sample
covariance 𝑠𝑋,𝑌 :

𝑠𝑋,𝑌 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦)

Notice that the sum ∑𝑛
𝑖=1 (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦) in 𝑠𝑋,𝑌 is exactly the same as the

one we saw above when analyzing the quadrants. So the covariance formula
captures this idea that if the covariance is positive, then most of the points are
in the top-right and bottom-left quadrants, and if the covariance is negative,
then most of the points are in the top-left and bottom-right quadrants.

The only difference from above is that we divide by 𝑛 − 1. We do this because
we are trying to estimate 𝜎𝑋,𝑌 , which is the expected value of this product of
deviations from the means. We divide by 𝑛−1 instead of 𝑛 because it gives less
biased estimates of 𝜎𝑋,𝑌 .



3.5. RELATIONSHIP TO THE VARIANCE FORMULA 17

3.5 Relationship to the Variance Formula
Let’s compare the formula for the covariance with the variance formula you
learned about in Statistics 1. The formal definition of the variance is as follows.
For a random variable 𝑋, the variance 𝜎2

𝑋 is given by:

𝜎2
𝑋 = 𝔼 [(𝑋 − 𝔼 [𝑋])2]

The formula for the sample variance is given by:

𝑠2
𝑋 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

Imagine we tried to get the covariance between a variable 𝑋 and itself. We
replace 𝑋 for 𝑌 in the covariance formula and we get:

𝜎𝑋,𝑋 = 𝔼 [(𝑋 − 𝔼 [𝑋]) (𝑋 − 𝔼 [𝑋])] = 𝔼 [(𝑋 − 𝔼 [𝑋])2] = 𝜎2
𝑋

which is the same as the variance. We see the same if we replace 𝑦𝑖 and ̄𝑦 with
𝑥𝑖 and ̄𝑥 in the sample covariance formula:

𝑠𝑋,𝑋 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥) (𝑥𝑖 − ̄𝑥) = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2 = 𝑠2
𝑋

So the covariance between a variable and itself is equal to the variance. The vari-
ance formula is a special case of the covariance formula when the two variables
are the same.

3.6 Calculating the Covariance in R
We can calculate the covariance in R easily using the cov() function. We
just give it two numeric vectors as arguments. Using our advertising and sales
example:

df <- read.csv("advertising-sales.csv")
cov(df$advertising, df$sales)

[1] 420.9673

We can see that the covariance is positive, indicating a positive linear relation-
ship between advertising and sales. This is what we saw in the scatter plot.

For demonstrative purposes1, let’s try to calculate the covariance in R using the
formula above instead of the built-in cov() function.

1If we wanted to estimate a model 𝔼[𝑌𝑖|𝑥𝑖1, 𝑥𝑖2] = 𝛽0 + 𝛽1(𝑥𝑖1 + 𝑥𝑖2), i.e. a simple linear
regression model with 𝑌𝑖 explained by the sum of 𝑥𝑖1 and 𝑥𝑖2 we can’t just do lm(y ~ x1
+ x2, data = df). This is because this would actually estimate the model 𝔼[𝑌𝑖|𝑥𝑖1, 𝑥𝑖2] =
𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2. To “inhibit” R from “interpreting” the + as adding a new variable we can
use the I() function (the “inhibit interpretation” function). We would use it like this: lm(y
~ I(x1 + x2), data = df).
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n <- nrow(df)
x <- df$advertising
y <- df$sales
x_bar <- mean(x)
y_bar <- mean(y)
(1 / (n - 1)) * sum((x - x_bar) * (y - y_bar))

[1] 420.9673

We get the same answer.

3.7 Interpreting the Covariance
If the covariance is positive or negative, it can tell us if the relationship is
positive or not. But the size of the number we get is difficult to interpret. The
covariance formula also depends on the units of the individual variables. For
example, if we are interested in the covariance between height and salary, it
will matter if we measure height in inches or centimeters or salary in dollars or
euros.

To see this, recall that we said that advertising was in thousands of euros, and
sales in millions. We can convert both variables to have units in euros as follows:

df$advertising <- df$advertising * 1000 # convert from €1000 to €
df$sales <- df$sales * 1000000 # convert from €m to €
head(df)

advertising sales
1 337100 22100000
2 128900 10400000
3 132400 9300000
4 251300 18500000
5 250000 12900000
6 132600 7200000

If we get the covariance now, we see that the scale of the number is much much
larger:

cov(df$advertising, df$sales)

[1] 420967275126

So the covariance is heavily dependent on the units of the variables, and is
difficult to tell if a covariance is large or small. It’s only able to easily tell us if
the relationship is positive or negative.

What we will discuss in the next chapter is another measure of the association
between two variables which doesn’t depend on the units, and is much easier to
interpret the strength of the relationship. This is the correlation.



Chapter 4

Correlation

In this chapter we will discuss the correlation, which is a measure of the asso-
ciation between two variables that is easy to interpret and does not depend on
the units of the underlying variables.

4.1 Formula
The formula for the sample correlation is very similar to the covariance. The
only difference is that we divide by the sample standard deviations of 𝑋 and 𝑌 .

The sample correlation coefficient between 𝑋 and 𝑌 is given by:

𝑟𝑋,𝑌 = 𝑠𝑋,𝑌
𝑠𝑋𝑠𝑌

where 𝑠𝑋,𝑌 is the covariance between 𝑋 and 𝑌 (discussed in Chapter 3) and 𝑠𝑋
and 𝑠𝑌 are the sample standard deviations of 𝑋 and 𝑌 (the square root of the
variance, which was also discussed in Chapter 3).

Dividing the covariance by the product of the sample standard deviations brings
two important benefits:

1. The correlation coefficient must always be between −1 and +1 (can be
proven mathematically). This makes interpretation easier, as we will see
below.

2. The correlation coefficient has no units. If we were to change the units of
𝑋, which would scale 𝑋 proportionally up or down, it would affect 𝑠𝑋,𝑌
and 𝑠𝑋 the same way and cancel in the formula. We will see an example
of this below.
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4.2 Interpretation
Similar to the covariance, if the correlation is positive, we say 𝑋 and 𝑌 are
positively linearly related. But we can also use how close it is to 0 or 1 to
quantify the strength of the relationship:

• If the correlation is high (such as 0.8), we can say “there is a strong positive
linear relationship between 𝑋 and 𝑌 ”.

• If the correlation is low (such as 0.2), we can say “there is a weak positive
linear relationship between 𝑋 and 𝑌 ”.

If the correlation is negative, we say 𝑋 and 𝑌 are negatively linearly related.
We can use how close it is to 0 or −1 to quantify the strength of the relationship:

• If the correlation is negative and large in magnitude (such as -0.8), we can
say “there is a strong negative linear relationship between 𝑋 and 𝑌 ”.

• If the correlation is negative but small in magnitude (such as -0.2), we can
say “there is a weak negative linear relationship between 𝑋 and 𝑌 ”.

If the correlation is zero or very close to zero, we say “𝑋 and 𝑌 are uncorrelated”.

4.3 Perfect Linear Relationships
If the correlation is exactly 1, the points fall exactly along a straight upward-
sloping line. This is called a perfect positive linear relationship. In this case,
whenever 𝑥 increases, then 𝑦 always increases, and always in the same way.

If the correlation is exactly −1, the points fall exactly along a straight downward-
sloping line. This is called a perfect negative linear relationship.

Here is what a scatter plot of two variables with a perfect positive linear rela-
tionship (left figure) and perfect negative linear relationship (right figure) would
look like:

library(ggplot2)
library(gridExtra)
df <- data.frame(x = runif(100, 0, 100))
df$y1 <- 0.5 * df$x
df$y2 <- 50 - 0.5 * df$x
g1 <- ggplot(df, aes(x, y1)) +
geom_point(size = 0.5) +
theme_minimal() +
ylab("y")

g2 <- ggplot(df, aes(x, y2)) +
geom_point(size = 0.5) +
theme_minimal() +
ylab("y")

grid.arrange(g1, g2, nrow = 1)



4.4. NON-LINEAR RELATIONSHIPS 21

0

10

20

30

40

50

0 25 50 75 100
x

y

0

10

20

30

40

50

0 25 50 75 100
x

y

4.4 Non-Linear Relationships

Sometimes 𝑥 and 𝑦 may be strongly related, but in a non-linear way. Because
the correlation formula only measures the strength of a linear relationship, you
may get a correlation of close to 0 even if 𝑥 and 𝑦 are clearly related.

For example, suppose 𝑥 and 𝑦 had a U-shaped relationship, like this:

set.seed(2352342)
df <- data.frame(x = runif(100, 0, 100))
df$y <- 300 + df$x - 0.25 * df$x^2 + 0.00266 * df$x^3 + runif(100, -50, 50)
ggplot(df, aes(x, y)) + geom_point(size = 0.5) +
geom_smooth(formula = y ~ x, method = 'lm', se = FALSE) +
theme_minimal() + ylab('y')
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The correlation coefficient for these data points is only 0.004, very close to zero.
This is despite that there is clearly a tight relationship between 𝑥 and 𝑦. Thus
the correlation coefficient is only able to tell us about the strength of a linear
relationship, and does not work for non-linear relationships.

4.5 Calculating the Correlation in R
We can calculate the correlation in R easily using the cor() function. Very
similar to the cov() function, we just give it two numeric vectors as arguments.
Using our advertising and sales example:

df <- read.csv("advertising-sales.csv")
cor(df$advertising, df$sales)

[1] 0.8677123

The correlation is positive and close to 1. Thus there is a strong positive linear
relationship between advertising and sales.

Let’s confirm that the correlation is unaffected by the units of the underlying
variables. We convert advertising and sales to euros again and recalculate the
correlation:

df <- read.csv("advertising-sales.csv")
df$advertising <- df$advertising * 1000 # convert from €1000 to €
df$sales <- df$sales * 1000000 # convert from €m to €
cor(df$advertising, df$sales)

[1] 0.8677123

We get the same number as before. So the correlation doesn’t depend on the
units.
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Spurious Relationships

5.1 Introduction
It’s possible to measure a very strong correlation between two variables, but it
doesn’t necessarily mean there is a causal link between the two.

For example, with daily sales data for ice cream (𝑋) and fans (𝑌 ) we might
measure a very high correlation coefficient. Whenever ice cream sales are high,
fan sales are high, and whenever ice cream sales are low, fan sales are also low.

But it would be a strange idea to think that more ice cream causes fan sales to
increase, or more fans to cause ice cream sales to increase. A more reasonable
explanation for this is that increases in the temperature causes both ice cream
sales and fan sales to increase.

We call such a correlation a spurious correlation. This is when two variables are
correlated but are not causally related. Often some other variable (call it 𝑍) is
causing both 𝑋 and 𝑌 to move together. We call such a variable a confounding
variable. In the ice cream sales and fan sales example, the temperature is the
confounding variable.

5.2 Examples
We’ll now take a look at some examples of spurious correlations.

5.2.1 Internet Explorer and Homocides
The figure below plots the number of murders each year in the US against the
annual market share of the web browser Internet Explorer. The correlation is
very high and close to 1.

23
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library(ggplot2)
library(ggrepel)
df <- data.frame(
year = 2006:2011,
x = c(70, 69, 66, 50, 46, 45),
y = c(17100, 16900, 16400, 15500, 14800, 14700)

)
ggplot(df, aes(x, y)) +
geom_point(size = 2.5) +
geom_smooth(formula = y ~ x, method = 'lm', se = FALSE) +
geom_text_repel(aes(label = year)) +
theme_minimal() +
xlab("Internet Explorer Market Share") +
ylab("Murders in USA")
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Does this mean that the use of Internet Explorer drove people to commit more
murders? Although Internet Explorer was very frustrating to use, it is an un-
likely explanation. A more reasonable explanation is that both variables saw a
declining trend throughout the 2000s from other causes (such as the release of
Mozilla Firefox and Google Chrome) and only appear to be correlated.

5.2.2 Chocolate Consumption and Cognitive Function

Another example from this study documented a strong correlation (0.791) be-
tween per capita annual chocolate consumption and the number of Noble laure-
ates:

https://www.nejm.org/doi/full/10.1056/NEJMon1211064
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Figure 5.1: Source: Messerli, F.H., 2012. Chocolate consumption, cognitive
function, and Nobel laureates. N Engl J Med, 367(16), pp.1562-1564.

The relationship is surprisingly strong, with only Sweden being an outlier in
having more Nobel laureates than would be predicted by its annual per capita
chocolate consumption (interesting, considering Sweden is the country giving
out the prize…).

Could it be the chocolate makes your brain function better, leading to more
Nobel laureates? After all, we need energy (calories) to think, and chocolate
has lots of that! Or is it that nations celebrate winning a Nobel prize by consum-
ing inordinate amounts of chocolate? Both of these explanations are unlikely.
What is more likely is that another variable, 𝑍, causes both more chocolate con-
sumption and more Nobel prizes. This is how wealthy and developed a country
is, as these lead to both more investment in education and scientific laboratory
equipment, and the consumption of more chocolate.

5.2.3 Storks and Babies
When young children ask where babies come from, parents sometimes tell their
children that a stork delivered the baby (instead of trying to explain the details
of the human reproductive system).
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This study found a correlation of 0.62 between the number of stork breeding
pairs in a country and the number of births from humans. Is this scientific
evidence that storks actually do deliver babies?

A more natural explanation is that big countries (with lots of land) tend to have
more people, and hence more births, and big countries also have more storks.
Thus the confounder here could be land area.

5.3 Confounders More Generally
The above discussion was for the case where 𝑋 and 𝑌 were causally unrelated.
It is also possible that 𝑋 has a causal impact on 𝑌 , but both 𝑋 and 𝑌 are also
affected by a confounder 𝑍. In this case we also have to be careful interpreting
the correlation between 𝑋 and 𝑌 . In the presence of confounders, it is possible
to measure a positive correlation between 𝑋 and 𝑌 but the true causal impact
of 𝑋 on 𝑌 is negative.

One example of this is this study, which contributed to one of the authors
receiving the Nobel memorial prize in Economics. The authors observe a positive
correlation between the number of children in a classroom and how well they do
on tests. If we interpret this as having larger classrooms helps children learn, the
government might decide to employ fewer teachers and merge more classrooms.

However, there is a confounder here which is the socioeconomic status of stu-
dents attending the school. Urban areas tend to have a higher socioeconomic
status, and students with higher socioeconomic status usually do better on tests
despite there being more students in the classroom.

Using a clever trick, the authors determined the true causal effect of class size on
test scores and found it to have the opposite sign: more children in the classroom
has a negative impact on test scores. Here is the idea behind their approach.
There was a rule in Israel that said that you had to go to a particular school
depending on where you lived. If there were only 40 students to be enrolled in a
particular year, there would be only 1 classroom. But if there were 41 students
they would split the students into 2 classrooms (one with 20 students, the other
with 21). Because it is more or less random if there are 40 versus 41 students
to enroll (as opposed to much bigger or smaller numbers which depend on if it
is an urban area or not), if we compare the test scores in schools with exactly
40 students in a year (with big classrooms) and 41 students (with two small
classrooms) we can get the causal effect of class size.

Therefore the government may make a totally wrong conclusion by only looking
at the correlation.

http://www.brixtonhealth.com/storksBabies.pdf
https://academic.oup.com/qje/article/114/2/533/1844228


Chapter 6

The Simple Linear
Regression Model (SLR)

Using the correlation coefficient we learned how to measure the strength of the
linear relationship between 𝑋 and 𝑌 . We will now introduce the Simple Linear
Regression model which will allow us to do the following:

• We will measure what percentage of the variation in 𝑌 is explained by the
variation in 𝑋.

• We will estimate how much 𝑌 increases/decreases on average if 𝑋 increases
by 1 unit.

• We will quantify how precise these estimates are.
• We will learn how to predict Y for any value of X , and quantify how

precise those predictions are.

6.1 The Model
We model 𝑌 as a linear function of 𝑋. What do we mean by this? It means
we assume that 𝑌 is linearly related to 𝑋. We say that the values of 𝑌 are
generated according to the line 𝛽0 + 𝛽1𝑋, where 𝛽0 is the intercept and 𝛽1 is
the slope. The intercept 𝛽0 is what 𝑌 is when 𝑋 = 0 and the slope 𝛽1 is how
much 𝑌 increases when 𝑋 increases by 1 unit. However, for each observation
in the data 𝑖 we won’t have that 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 exactly. In fact, the values 𝑌𝑖
will rarely be exactly on the line. Most values will be above it or below it. So
we add an error term 𝜀𝑖 to the equation to account for this discrepancy. The
model for 𝑌𝑖 is then:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖

27
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Graphically, the regression line is given by the red line in the following figure:

The dots represent different data points (𝑋𝑖, 𝑌𝑖) from the population, where
𝑋 is on the horizontal axis and 𝑌 is on the vertical axis. In the figure we are
trying to model sales as a linear function of advertising. The red regression
line is the line that “best fits” the population cloud of points. Because the
regression line doesn’t match the points exactly, we add an error term 𝜀𝑖 which
is the vertical difference between the actual value of 𝑌𝑖 and the corresponding
point on the regression line at 𝑋𝑖. The error is positive for points above the
line and negative below it.

6.2 Estimation
How do we find the regression line that “best fits” this could of points? That is,
how do we find the best 𝛽0 and 𝛽1? Intuitively we want a line that makes the
errors as close to zero as possible. Because the errors can be positive or negative,
we find the line that makes the sum of squared errors the smallest. Taking the
square turns the negative errors to positive ones, and also makes the line try to
avoid big errors (because when we square them, they get even bigger!).

We won’t cover the mathematics here, but it can be shown that in the population,
the regression coefficients that minimize the sum of squared errors are given by:

𝛽1 = 𝜎𝑋,𝑌
𝜎2

𝑋
and 𝛽0 = 𝜇𝑌 − 𝛽1𝜇𝑋
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where 𝜇𝑋 and 𝜇𝑌 are the population means of 𝑋 and 𝑌 .

With a sample dataset:

((𝑥1, 𝑦1) , (𝑥2, 𝑦2) , … , (𝑥𝑛, 𝑦𝑛))

the sample regression coefficients, 𝑏0 and 𝑏1, can be calculated with the sample
analogs of this:

𝑏1 = 𝑠𝑋,𝑌
𝑠2

𝑋
and 𝑏0 = ̄𝑦 − 𝑏1 ̄𝑥

6.3 Predicted Values and Residuals

For any value 𝑥𝑖, the predicted value for 𝑦𝑖 is:

̂𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖

where the hat ( ̂) denotes that it is a predicted value. This is the value of the
𝑌 variable predicted by the model. The difference between the actual value of
𝑌 and the one predicted by the model given the corresponding value of the 𝑋
variable is the prediction error, 𝑦𝑖 − ̂𝑦𝑖.

We call this prediction error the residual, and denote it by 𝑒𝑖:

𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖

Graphically we can represent this in a similar way to above:
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Figure 6.1: Sample Regression Line

6.4 Interpreting Coefficient Estimates
In the next chapter we will learn how to estimate this model in R with real data.
But for now, let’s consider a simple example and discuss how to interpret the
estimates of the intercept, 𝑏0, and the slope, 𝑏1.

Suppose you have a sample of data on advertising (𝑥𝑖) and sales (𝑦𝑖), both
measured in millions of euros. Suppose you estimate 𝑏0 = 150 and 𝑏1 = 0.4.
The sample regression line is then:

150 + 0.4𝑥

The intercept gives an estimate of the expected value of 𝑌 conditional on 𝑥 = 0.
We denote this by 𝔼 [𝑌𝑖|𝑥𝑖 = 0]. This means, it is an estimate of the amount
of sales the firm will generate (in millions) if it has zero advertising. Thus if
advertising is zero, then the model predicts sales to be €150m. However, if there
are no observations for advertising near zero, this prediction is unreliable.

The slope gives an estimate of the expected change in 𝑌 when 𝑥 increases by 1
unit. It is an estimate of

𝔼 [𝑌𝑖|𝑥𝑖 + 1] − 𝔼 [𝑌𝑖|𝑥𝑖]
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If the 𝑋 variable increases by one unit, the model predicts that the 𝑌 variable
will on average increase by 𝑏1 units. In this example, if advertising increases by
€1m then on average sales increases by €0.4m. We write millions because the
units for both variables are in millions.

6.5 Regression Slope Versus Correlation
One thing worth pointing out here is that the regression slope is not the same
thing as the correlation coefficient. Let’s compare the formulas for both of them:

𝑏1 = 𝑠𝑋,𝑌
𝑠2

𝑋

𝑟𝑋,𝑌 = 𝑠𝑋,𝑌
𝑠𝑋𝑠𝑌

The numerators for both are the same, but the denominators are different. So
in general they will be different. The interpretation of the values also differ.

There is one special case when both will have the same value. This is when
𝑠𝑋 = 𝑠𝑌 . If we standardize both the 𝑋 and 𝑌 variable (subtract the mean
and divide by the standard deviation), then the sample correlation coefficient
and sample regression slope will have the same value. This is because after
standardizing the resulting variables both have a standard deviation of 1.

6.6 Why Do We Call it Regression?
The word regression comes from the 1886 journal article Regression towards
mediocrity in hereditary stature by Sir Francis Galton. After collecting data
on the heights of many people and their children, he observed that while tall
parents on average had tall children (and short parents on average had short
children), on average the children’s heights were “less extreme” and closer to the
mean height of the population than their parents. Thus people with extreme
heights (tall or short) did not pass on their traits completely to their children.
This phenomenon is called regression to the mean.
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Chapter 7

SLR Estimation

In this chapter we will learn how to estimate a simple linear regression in R
using data. We use the lm() function to do this, where LM stands for Linear
Model.

We will show 2 examples:

1. The advertising and sales example introduced in Chapter 2.
2. Data on Dutch exports and GDP over time.

7.1 Advertising and Sales Example
To estimate a linear regression with y as the dependent variable and x as the
independent variable (with both variables contained in a dataset df), we use
the command lm(y ~ x, data = df). Let’s try this out with the advertising
and sales data:

df <- read.csv("advertising-sales.csv")
lm(sales ~ advertising, data = df)

Call:
lm(formula = sales ~ advertising, data = df)

Coefficients:
(Intercept) advertising

4.24303 0.04869

The output shows us the command that was provided (under Call:) and the
sample regression coefficients, 𝑏0 = 4.24303 and 𝑏1 = 0.04869. The sample
regression line is 4.24303 + 0.04869𝑥.

33
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Let’s interpret these estimates. First let’s remind ourselves of what units the
variables are in:

• Sales is measured in millions of euros.
• Advertising is measured in thousands of euros.

For the intercept, 𝑏0, recall that it gives an estimate of 𝔼 [𝑌𝑖|𝑥𝑖 = 0], the expected
value of the 𝑌 variable when the 𝑋 variable equals zero. In this example, when
the firm does zero advertising, the model predicts that the firm’s sales will be
4.24303 units. Because the units of sales are in millions, this means the expected
sales will be €4.24303m.

To see if this is a reliable estimate, we check if we have observations 𝑥𝑖 at or
near zero:

summary(df$advertising)

Min. 1st Qu. Median Mean 3rd Qu. Max.
11.7 123.5 207.3 200.9 281.1 433.6

There are no observations at zero. The smallest value is 11.7 (€11,700), so this
estimate is potentially unreliable.

For the slope, 𝑏1, recall that it gives an estimate of:

𝔼 [𝑌𝑖|𝑥𝑖 + 1] − 𝔼 [𝑌𝑖|𝑥𝑖]

which is the expected change in units of the 𝑌 variable when the 𝑋 variable
increases by 1 unit. Increasing the 𝑋 by 1 unit corresponds to an increasing in
advertising by €1,000. So when advertising increases by €1,000, sales on average
increases by 0.04869 × €1,000,000 = €48,690.

7.2 Netherlands Exports and GDP
This advertising-sales dataset is an example of cross-sectional data. Cross-
sectional data involve observations from different individuals or firms surveyed
at the same point in time. We will now consider an example with time-series
data. Time-series data involve observations from the same individual or firm at
different points in time.

The example will we consider uses the dataset nl-exports-gdp.csv which contains
two variables measured over 1969-2023:

1. Netherlands GDP (measured in billions of USD).
2. Netherlands total exports of goods and services (measured in billions of

USD).

We know from how GDP is calculated that if exports increase by $1bn and
nothing else changes, then GDP should also increase by $1bn. Let’s check if
this is true in the data by estimating the regression model:

https://walshc.github.io/stats2/nl-exports-gdp.csv
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𝐺𝐷𝑃𝑖 = 𝛽0 + 𝛽1𝐸𝑥𝑝𝑜𝑟𝑡𝑠𝑖 + 𝜀𝑖

df <- read.csv("nl-exports-gdp.csv")
lm(gdp ~ exports, data = df)

Call:
lm(formula = gdp ~ exports, data = df)

Coefficients:
(Intercept) exports

287.6114 0.8224

The intercept 𝑏0 = 287.6114 gives an estimate of the value of GDP (in bil-
lions) when exports are zero. So the model predicts that Dutch GDP would be
$287.61bn if it exported zero goods.

Having zero exports is a very strange concept for an open economy like the
Netherlands. Let’s see if any observations of the 𝑋 variable are at or near zero:

summary(df$exports)

Min. 1st Qu. Median Mean 3rd Qu. Max.
62.98 122.05 257.93 332.33 505.88 786.90

The smallest value is $62.98bn, very far from zero. Therefore we should not
trust the estimate of the intercept.

The slope, 𝑏1 = 0.8224 tells us that if exports increase by 1 unit ($1bn), on
average GDP increases by 0.8224 units ($822.4m). This is somewhat less than
what we expect to see. The reason it is a bit less is because other things are
changing at the same time that also affect exports and GDP.
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Chapter 8

SLR Model Assumptions

We are now interested in performing inference for our model. By inference we
mean inferring the properties of the population regression model generating our
sample data. With model inference we can answer questions like:

• How precise are our estimates 𝑏0 and 𝑏1?
• What are the confidence intervals around 𝑏0 and 𝑏1?
• How can we perform hypothesis tests on 𝑏0 and 𝑏1?

In order to perform model inference, we need to make some assumptions about
our model. There are 6 assumptions in total, which we will discuss in the
following sections.

8.1 Assumption 1: Linear in Parameters

Assumption 1: Linear in Parameters

In the population model, the dependent variable 𝑌𝑖 is related to the inde-
pendent variable 𝑋𝑖 and the error 𝜀𝑖 according to:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖

This assumption means that the process that generates the data in our sample
follows this model. That is, 𝑌𝑖 has a linear relationship with 𝑋𝑖 and the values
𝑌𝑖 are generated according to the line 𝛽0 + 𝛽1𝑋𝑖 plus an error term 𝜀𝑖.

An example of something that would violate this is if the true population model
was something non-linear like:

𝑌𝑖 = exp (𝛽0) 𝑋𝛽1
𝑖 exp (𝜀𝑖)
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with 𝑋𝑖 > 0 for all 𝑖. If this were the true model, it would not be the end of the
world. We could take the natural log of both sides to get:

ln (𝑌𝑖) = 𝛽0 + 𝛽1 ln (𝑋𝑖) + 𝜀𝑖

This transformed model satisfies assumption 1. So if we transform our data into
logs, we can still use the simple linear regression model.

8.2 Assumption 2: Random Sampling

Assumption 2: Random Sampling

We have a random sample of size 𝑛, ((𝑥1, 𝑦1) , … , (𝑥𝑛, 𝑦𝑛)) following the
population model in Assumption 1.

This assumption means that the sample of data we observe were generated
according to the model 𝑌𝑖 = 𝛽0 +𝛽1𝑋𝑖 +𝜀𝑖. The values of 𝑦𝑖 that we observe are
related to the unknown population parameters, observed 𝑥𝑖 and the unobserved
error 𝜀𝑖 according to 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖, where 𝜀𝑖 is independent across observation
𝑖.
A crucial part of this assumption is the independence of the error terms across
observations. For that reason this assumption is also called the independence
assumption.

With cross-section data, there could be dependence in 𝜀𝑖 between people in the
same household/town/industry. With time-series data, there could be depen-
dence in 𝜀𝑖 in subsequent time periods.

Violations of this assumption are much more common with time series data. An
example of this assumption being violated can be seen in the figure below, which
plots the errors against time:

set.seed(5727)
nT <- 200 # number of time periods
df <- data.frame(
t = 1:nT,
y = 0,
x = runif(nT, 10, 12),
e = 0

)
df$e[1] <- 1
df$y[1] <- 1
# Loop over time periods with first-order autocorrelation in the error:
for (i in 2:nT) {
df$e[i] <- rnorm(1, 0, 0.5) + 0.95 * df$e[i - 1]
df$y[i] <- 0.0001 * df$x[i] + df$e[i]
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}
library(ggplot2)
ggplot(df, aes(t, y)) +
geom_point(size = 0.5) +
geom_abline(intercept = 0, slope = 0) +
theme_minimal() +
ylab("error")
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We observe a clear pattern in the errors: if the error is positive in one time
period, it’s very likely to be positive in the following time period. If the error is
negative in one time period, it’s also very likely to be negative in the following
time period. If the errors were independent, the value of the error in any given
time period should not depend on what the value of the error was in the previous
period.

Let’s compare what the errors would look like over time if they were indepen-
dent:

set.seed(345346)
nT <- 200
df <- data.frame(
t = 1:nT,
e = rnorm(nT)

)
ggplot(df, aes(t, e)) +
geom_point(size = 0.5) +
geom_abline(intercept = 0, slope = 0) +
theme_minimal() +
ylab("error")
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Here we just see a random cloud of points. The error in any time period does
not appear in any way related to the value of the error in the previous time
period.

Later in this course we will learn how to formally test for correlation in the
residuals over time. But now, let’s learn how to make a plot of the residuals in
R in order to visually inspect this model assumption. I would like to stress that
this approach only works with time-series data. With cross-sectional data we
cannot plot the residuals over time, because all subjects in cross-sectional data
are surveyed at the same point in time.

As an example we return to the Netherlands GDP and exports data from Chap-
ter 7.

The first thing we need to do is read in the data and estimate the regression
model. This is the same as in Chapter 7. When we estimate the regression
model, we will assign it to an object in our environment so we can access the
residuals from the model. Let’s assign the model to m (“M” for model):

df <- read.csv("nl-exports-gdp.csv")
m <- lm(gdp ~ exports, data = df)

Looking at our environment we can see that m is a list. If we click on it in RStudio
we can see all the different things stored in this list, such as the coefficients, the
residuals and the fitted values. There are 12 objects in total, but we will only
use some of these in this course.

We can also list all the things stored in m by using the ls() command:

ls(m)

[1] "assign" "call" "coefficients" "df.residual"
[5] "effects" "fitted.values" "model" "qr"
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[9] "rank" "residuals" "terms" "xlevels"

Recall that to access objects in a list we also use the dollar symbol (the ex-
traction operator), just like with a data.frame. So to access the residuals, we
can use m$residuals:

m$residuals

1 2 3 4 5 6 7
-76.979824 -66.766015 -60.884810 -56.927320 -48.719213 -40.048630 -37.653082

8 9 10 11 12 13 14
-30.219716 -20.420951 -14.494551 -14.067661 -11.543704 -17.244818 -20.792229

15 16 17 18 19 20 21
-15.474479 -11.867085 -6.794114 1.873095 5.313227 8.821736 16.430221

22 23 24 25 26 27 28
27.048551 28.452513 31.860574 31.402768 31.051349 29.617104 39.398917

29 30 31 32 33 34 35
42.211326 52.859591 60.121738 52.430464 62.941840 62.376269 57.683258

36 37 38 39 40 41 42
44.828888 38.944480 36.803112 42.901967 52.338672 60.545934 33.388814

43 44 45 46 47 48 49
23.338514 1.345738 -10.829735 -21.366546 -42.487514 -34.390817 -46.009436

50 51 52 53 54 55
-51.404011 -46.927667 -53.610900 -49.250801 -40.059088 -29.095947

This gives us the value of the residuals for all 55 observations in our data. Let’s
assign these residuals to our dataframe df so we can plot them:

df$residuals <- m$residuals
head(df)

year gdp exports residuals
1 1969 262.4266 62.97751 -76.97982
2 1970 278.5400 70.15091 -66.76601
3 1971 290.5646 77.62057 -60.88481
4 1972 300.8328 85.29375 -56.92732
5 1973 317.2108 95.22753 -48.71921
6 1974 328.1187 97.94799 -40.04863

We then plot the residuals over time. We use the year variable as the time
variable:

ggplot(df, aes(year, residuals)) +
geom_point()



42 CHAPTER 8. SLR MODEL ASSUMPTIONS

−80

−40

0

40

1970 1980 1990 2000 2010 2020
year

re
si

du
al

s

We can see that the residuals in a period clearly depend on the value in the
previous period. Therefore the residuals are not independent and violate as-
sumption 2! In Chapter 27 we will learn how to formally test for this violation,
and how to correct for it.

8.3 Assumption 3: Sample Variation in the Ex-
planatory Variable

Assumption 3: Sample Variation in the Explanatory Variable

The sample outcomes (𝑥1, … , 𝑥𝑛) are not all the same value.

A simple explanation for this assumption is that we need it to avoid dividing by
zero when calculating the sample regression coefficients. Recall the formula for
the slope coefficient:

𝑏1 = 𝑠𝑋,𝑌
𝑠2

𝑋

If all the values (𝑥1, … , 𝑥𝑛) in the sample were the same value, then the sample
variance of 𝑋 would be zero, i.e. 𝑠2

𝑋 = 0. If 𝑠2
𝑋 = 0, we would be dividing by

zero in the formula for the sample regression slope.

In the example plot below, all the values of 𝑥 are equal to 10. The sample
variance is zero and we cannot estimate the regression slope.

set.seed(3453463)
df <- data.frame(x = rep(10, 20))
df$y <- runif(20, 0, 100)
ggplot(df, aes(x, y)) +
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geom_point(size = 0.5) +
scale_x_continuous(limits = c(9, 11)) +
theme_minimal()
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We can easily check whether this assumption holds with our data in R by cal-
culating the standard deviation of our 𝑥 variable. If the standard deviation is
zero, all values are the same and the assumption is violated. If the standard
deviation is positive, there are at least some different values and the assumption
holds.

Let’s check it in the advertising and sales data:

df <- read.csv("advertising-sales.csv")
sd(df$advertising)

[1] 92.98518

This is positive, so it holds.

Although we only need just one value to be different to be able to estimate the
regression model, more variation in the 𝑥 variable will be better for our model.

8.4 Assumption 4: Zero Conditional Mean

Assumption 4: Zero Conditional Mean

The error 𝜀𝑖 has an expected value of zero given any value of the explana-
tory variable, i.e. 𝔼 [𝜀𝑖|𝑋𝑖] = 0 for all 𝑋𝑖.

An implication of this is that the error term is uncorrelated with the explanatory
variable.
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Let’s consider some examples of when this assumption would be violated. The
first is a model trying to explain ice cream sales (𝑌 ) with fan sales (𝑋). Ice
cream sales are influenced by temperature. Because temperature is not included
in the model (is not the 𝑋 variable), temperature is included in the error, 𝜀. But
temperature is also correlated with fan sales, so 𝜀 is correlated with 𝑋. Therefore
𝔼 [𝜀𝑖|𝑋𝑖] ≠ 0, a violation of the zero conditional mean assumption. This can
bias the estimation of 𝛽1. The true 𝛽1 should equal zero: if fan sales increase
and nothing else changes (i.e. temperature stays the same), then there should be
no increase in ice cream sales. However, if we were to estimate this model with
data we would estimate 𝑏1 > 0 as we observe a (spurious) correlation between
ice cream sales and fan sales.

Another example is the test scores (𝑌 ) and classroom size (𝑋) example that we
saw in Chapter 5. Test scores are influenced by socioeconomic status, which
is higher in urban areas. So the degree of urbanization is included in 𝜀. But
urban areas also have classrooms with more students, so 𝜀 is correlated with 𝑋.
The true 𝛽1 should be negative (smaller classrooms improve test scores) but we
would estimate 𝑏1 > 0. Estimation is biased again!

Non-linearities in the relationship between 𝑋 and 𝑌 can also violate the zero
conditional mean assumption 𝔼 [𝜀𝑖|𝑋𝑖] = 0. Consider the following plot:

set.seed(53653)
df <- data.frame(x = runif(200, 0, 130))
df$y <- 300 + df$x - 0.35 * df$x^2 + 0.0043 * df$x^3 + runif(100, -400, 400)
ggplot(df, aes(x, y)) + geom_point(size = 0.5) +
geom_smooth(formula = y ~ x, method = "lm", se = FALSE) +
scale_x_continuous(breaks = c(0, 25, 50, 75, 100, 125)) +
theme_minimal() +
ylab("y")
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At 𝑥 = 75, the average value of the error term is negative, whereas at 𝑥 = 125,
the average value of the error term is positive. Under the zero conditional mean
assumption, the average value of the error should be zero at all values of 𝑋, so
this would also be a violation of this assumption.

8.5 Assumption 5: Homoskedasticity

Assumption 5: Homoskedasticity

The error 𝜀𝑖 has the same variance given any value of the explanatory
variable. In other words:

Var (𝜀𝑖|𝑥𝑖) = 𝜎2
𝜀

Homoskedasticity means that the variance of the errors is the same for small
values of 𝑥 and large values of 𝑥. “Skedasticity” comes from the Ancient Greek
word ���������� (skedánnymi) which means to scatter or disperse. So homoskedas-
ticity litterly means “same dispersion”. A violation of homoskedasticity is called
heteroskedasticity, which means “different dispersion”.

Let’s take a look at a scatter plot of data that violate the homoskedasticity
assumption:

set.seed(434634)
df <- data.frame(x = runif(200, 0, 130))
df$y <- 300 + 0.4 * df$x + rnorm(200, 0, 200) * 0.001 * df$x
ggplot(df, aes(x, y)) +
geom_point(size = 0.5) +
geom_smooth(formula = y ~ x, method = "lm", se = FALSE) +
theme_minimal()
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The variance of the residuals is small at low 𝑥 and large at high 𝑥.

Let’s learn how to visually inspect our data for heteroskedasticity in R (in
Chapter 26 we will learn how to formally test for it). We will use the advertising
and sales data again.

We first obtain the residuals from our estimated model, just like we did when
we were testing assumption 2:

df <- read.csv("advertising-sales.csv")
m <- lm(sales ~ advertising, data = df)
df$residuals <- m$residuals

We then plot the residuals and the 𝑥 variable against each other:

library(ggplot2)
ggplot(df, aes(advertising, residuals)) + geom_point()
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The dispersion in the residuals appears to be increasing in the 𝑥 variable. This
is evidence of heteroskedasticity, a violation of assumption 5.

When we have a violation of homoskedasticity, our estimates of 𝛽1 are not
biased but we can no longer perform inference (obtain confidence intervals or
perform hypothesis tests). In Chapter 26 we will learn how we can correct for
heteroskedasticity.

8.6 Assumption 6: Normality

Assumption 6: Normality

The distribution of 𝜀𝑖 conditional on 𝑥𝑖 is normally distributed.

This means that the distribution of the error terms conditional on the 𝑋 variable
should have a symmetric bell-curve shape:

df <- data.frame(error = qnorm(seq(0.001, 0.999, by = 0.001)))
df$density <- dnorm(df$error)
ggplot(df, aes(error, density)) +
geom_line() +
theme_minimal() +
xlab("�|x") +
ylab("f(�|x)")
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This assumption, combined with assumptions 4 and 5 implies:

𝜀𝑖|𝑥𝑖 ∼ 𝒩 (0, 𝜎2
𝜀)

In words: 𝜀𝑖 conditional on 𝑥𝑖 follows a normal distribution with a zero mean
and variance 𝜎2

𝜀 .

Let’s take a look at an example scatter plot of 𝑋 and 𝑌 of data that violate
this assumption:

set.seed(34636)
n <- 2000
df <- data.frame(x = runif(n, 0, 130))
df$y <- 300 + 0.4 * df$x +
ifelse(rbinom(n, 1, 0.5) == 1, rnorm(n, 20, 8), rnorm(n, -0.5, 3))

ggplot(df, aes(x, y)) +
geom_point(size = 0.5) +
geom_smooth(formula = y ~ x, method = 'lm', se = FALSE) +
theme_minimal()
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We can see that the errors are not symmetric around the regression line. They
are positively skewed. Errors below the regression line (negative values) are
closer together, whereas above the regression line (positive values) they are
more dispersed.

8.7 Model Assumptions Summary
In short the model assumptions to perform inference are:

• The population model is 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖.
• We have a random sample of size 𝑛, ((𝑥1, 𝑦1) , … (𝑥𝑛, 𝑦𝑛)) following the

population model, with the values (𝑥1, … , 𝑥𝑛) not all taking the same
value.

• The errors conditional on 𝑥 are normally distributed with a zero mean and
constant variance: 𝜀𝑖|𝑥𝑖 ∼ 𝒩 (0, 𝜎2

𝜀).

We can only perform inference when all model assumptions hold. Later in
this course we will learn some techniques to deal with some violations of these
assumptions.
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Chapter 9

SLR Confidence Intervals

We will now learn how to estimate confidence intervals for our estimates 𝑏0 and
𝑏1. Before we do that, we will start by revising how to obtain a confidence
interval for the sample mean that you learned in Statistics 1. We will then show
the theory behind confidence intervals for the simple linear regression model,
followed by how to compute them in R.

9.1 Confidence Interval for the Sample Mean
We first revise how to calculate a (1-𝛼)% confidence interval for the sample
mean. We will consider the case where the variance of 𝑋 is not known and
needs to be estimated.

The steps are:

1. We estimate the sample mean with ̄𝑥 = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖.
2. We estimate the sample variance with 𝑠2 = 1

𝑛−1 ∑𝑛
𝑖=1 (𝑥𝑖 − ̄𝑥)2.

3. We compute the standard error of the mean using the formula √ 𝑠2
𝑛 .

4. We look for quantile 1− 𝛼
2 of the Student’s 𝑡 distribution with 𝑛−1 degrees

of freedom using software/tables. Call this number 𝑡1− 𝛼
2 ,𝑛−1.

5. We then calculate the confidence interval using the formula:

̄𝑥 ± 𝑡1− 𝛼
2 ,𝑛−1√𝑠2

𝑛

Let’s do a numeric example for a 95% confidence interval. Suppose you have 𝑛 =
400 observations from a random sample. You calculate the sample mean ̄𝑥 = 3
and sample variance 𝑠𝑋 = 16 from this sample. With 𝑛 = 400 and 𝛼 = 0.05,
the quantile of the Student’s 𝑡 distribution is 𝑡1− 𝛼

2 ,𝑛−1 = 1.96. 𝑡1− 𝛼
2 ,𝑛−1 × 𝑠𝑋√𝑛 .
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Using the formula, the confidence interval is:

3 ± 1.96 × √ 162

400

Simplifying this gives 3 ± 1.57.

Another way to write the confidence interval is [1.43, 4.57], i.e. 3 − 1.57 and
3 + 1.57. What does the confidence interval tell us? It tells us that we are 95%
confident that the population mean is between 1.43 and 4.57.

We can illustrate this graphically as follows. We draw the estimated sampling
distribution around ̄𝑥 using the standard error √ 162

400 . We can see that the
distribution is centered around the sample mean of 3 (with the red line). The
the 95% confidence interval is shaded in blue which contains 95% of the area
under the curve. The area remaining to the left and right are each 2.5% of the
total area. We can see that the left edge of the blue area is at 1.43 and the
right edge is at 4.57, corresponding to the limits of the 95% confidence interval
[1.43, 4.57] we calculated above.

library(ggplot2)
df <- data.frame(x = 3 + (16/sqrt(400))*qt(seq(0.001, 0.999, by = 0.001), 399))
df$y <- dt(qt(seq(0.001, 0.999, by = 0.001), 399), 399)
ci <- qt(0.975, 400 - 1) * (16/sqrt(400))
df$fill <- ifelse(df$x > 3 - ci & df$x < 3 + ci, df$x, NA)
ggplot(df, aes(x, y)) +
geom_line() +
xlab("") +
ylab("") +
geom_area(aes(x = fill), fill = "blue", alpha = 0.2) +
geom_vline(xintercept = 3, color = "red", alpha = 0.5) +
theme_minimal()
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9.2 Who is the “Student” behind the 𝑡 distribu-
tion?

Before discussing how to get confidence intervals for the simple linear regression
model, let’s just take a quick aside to discuss why we call it the “Student’s” 𝑡
distribution. The “student” is actually William Sealy Gosset (1876-1937), who
was the head brewer at the Guinness brewery in Dublin. Gosset wanted to
determine the quality of batches of hops by calculating the proportion of soft
and hard resins in small samples. Based on these small samples, he wanted to
make inference over the entire batch of hops. But because the samples were so
small he could not use the normal distribution. Instead he had to come up with
a different way to calculate confidence intervals. He figured out how to do this
mathematically. Because this discovery was useful beyond brewing (and why we
are learning it here) we wanted to publish his discovery. But in order to avoid
publishing trade secrets, he published it under a boring title that Guinness’s
competitors would never read and wrote about his work under the pseudonym,
“Student”.

This is probably Ireland’s greatest contribution to statistics. Unfortunately
when you visit the Guinness Brewery in Dublin there is only a tiny plaque
stating this. They should definitely make a bigger deal of it!

Let’s take a look at the 𝑡 distribution for different values of the degrees of
freedom:

library(ggplot2)
df <- do.call(rbind, lapply(c(5, 10, 20, 100), function(j) {
out <- data.frame(x = qt(seq(0.001, 0.999, by = 0.001), j), deg_freedom = j)
out$y <- dt(qt(seq(0.001, 0.999, by = 0.001), j), j)
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return(out)
}))
ggplot(df, aes(x, y, color = factor(deg_freedom))) +
geom_line() +
xlab("") +
ylab("") +
geom_vline(xintercept = 0, color = "gray") +
scale_color_discrete(name = "Degrees of freedom") +
theme_minimal()
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It has a mean of zero and is almost the same shape as the standard normal
distribution. With small 𝑛 the distribution is wider but as 𝑛 grows large it
converges to the standard normal distribution.

To see how different the quantiles of the 𝑡-distribution can be at small sample
sizes, we plot the quantile 𝑡1− 𝛼

2 ,𝑛−1 for 𝛼 = 0.05 and 𝑛 from 3 to 40. We can see
that at very small 𝑛 the quantile is very large. But as 𝑛 gets larger it approaches
the the familiar 1.96 of the normal distribution (shown in red).

library(ggplot2)
df <- data.frame(n = 3:40)
df$t <- qt(0.975, df$n - 1)
ggplot(df, aes(n, t)) +
geom_line() +
xlab("Degrees of freedom (n - 1)") +
ylab("97.5th quantile of the t-distribution") +
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geom_hline(yintercept = qnorm(0.975), color = "red") +
theme_minimal()
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9.3 The Standard Errors of the Regression Co-
efficients

9.3.1 Theory

Above we saw that the standard error of the sample mean was √ 𝑠2
𝑛−1 . To be able

to form confidence intervals for the regression coefficients, we need the analog
of this for the regression coefficients. To obtain these, we first need to get the
sample variance of the estimated model, 𝑠2

𝜀. The formula for this is:

𝑠2
𝜀 = ∑𝑛

𝑖=1 (𝑦𝑖 − ̂𝑦𝑖)
2

𝑛 − 2 = ∑𝑛
𝑖=1 𝑒2

𝑖
𝑛 − 2

The sum ∑𝑛
𝑖=1 𝑒2

𝑖 is called the “sum of squared errors”, or 𝑆𝑆𝐸 for short. We
divide by 𝑛 − 2 instead of 𝑛 − 1 because we had to estimate two parameters
(𝛽0 and 𝛽1) to obtain the residuals 𝑒𝑖. When we estimate the sample variance,
we only had to estimate one parameter (the sample mean), which is why we
divided by 𝑛 − 1 in that case.

The standard errors for the intercept and slope are then found with the formulas:

𝑠𝑏0
= ∑𝑛

𝑖=1 𝑥2
𝑖

𝑛
𝑠𝜀

√∑𝑛
𝑖=1 (𝑥𝑖 − ̄𝑥)2

𝑠𝑏1
= 𝑠𝜀

√∑𝑛
𝑖=1 (𝑥𝑖 − ̄𝑥)2

Note: You don’t need to know the formula for 𝑠𝑏0
or 𝑠𝑏1

for the exam. We will
always calculate these with R.
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9.3.2 Standard Errors in R
Let’s see how to calculate these with R. The most straightforward way to do this
is to use the summary() command with the estimated regression model. Let’s
try it with the advertising and sales data:

df <- read.csv("advertising-sales.csv")
m <- lm(sales ~ advertising, data = df)
summary(m)

Call:
lm(formula = sales ~ advertising, data = df)

Residuals:
Min 1Q Median 3Q Max

-8.0546 -1.3071 0.1173 1.5961 7.1895

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.243028 0.438525 9.676 <2e-16 ***
advertising 0.048688 0.001982 24.564 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.6 on 198 degrees of freedom
Multiple R-squared: 0.7529, Adjusted R-squared: 0.7517
F-statistic: 603.4 on 1 and 198 DF, p-value: < 2.2e-16

The standard error for the intercept is 𝑠𝑏0
= 0.438525 and the standard error

for the slope is 𝑠𝑏1
= 0.001982.

The summary() command also gives lots of information about the regression.
We will learn what all parts of the output means over the coming lectures. If
we only want to see the coefficients table with the standard errors, we can do:

coef(summary(m))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.24302822 0.438525138 9.675678 2.230651e-18
advertising 0.04868788 0.001982108 24.563691 5.059270e-62

This table is a matrix, which is an R object which is a rectangular array with
each element having the same type. Here the array is 2 × 4 (2 rows and 4
columns).

class(coef(summary(m)))

[1] "matrix" "array"
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This is different from a data.frame because in a data.frame columns could
have different types (but all elements of each column had to have the same type
and length).

To get the standard errors from this matrix, we can extract the column either
by its index or its column name:

coef(summary(m))[, 2]

(Intercept) advertising
0.438525138 0.001982108

coef(summary(m))[, "Std. Error"]

(Intercept) advertising
0.438525138 0.001982108

To extract a single value we must also specify the row. We can do this either
by its index or its row name. Suppose we want to get 𝑠𝑏1

. We can do either:

coef(summary(m))[2, 2]

[1] 0.001982108

or:

coef(summary(m))["advertising", "Std. Error"]

[1] 0.001982108

Of course the first option involves less typing. However, the second is much
clearer what the code intends to do: we can read advertising and Std. Error and
know that the number it produces will be the standard error on the advertising
coefficient from our model. Therefore the second option is arguably better code.

9.4 Confidence Intervals for Regression Coeffi-
cients

9.4.1 Theory
The formula for the regression coefficient confidence intervals is very similar to
the one for the sample mean. The formula for the confidence interval for the
regression slope is:

𝑏1 ± 𝑡1− 𝛼
2 ,𝑛−2 × 𝑠𝑏1

Let’s compare this to the one for the sample mean we saw above:

̄𝑥 ± 𝑡1− 𝛼
2 ,𝑛−1 × √𝑠2

𝑛
There are 3 differences:
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1. We replaced the sample mean ̄𝑥 with the estimate of the regression slope
𝑏1.

2. We use 𝑛−2 degrees of freedom instead of 𝑛−1 when obtaining the (1− 𝛼
2 )

quantile of the Student’s 𝑡 distribution.
3. We replaced the standard error of the sample mean √ 𝑠2

𝑛 with the standard
error of the sample regression slope.

Therefore once we know what the standard error is, the formula is essentially
the same in both cases: it is the estimate plus or minus the relevant quantile of
the Student’s 𝑡 distribution multiplied by the standard error. Only the degrees
of freedom argument is different.

9.4.2 Numeric Example
Let’s do a numeric example with this formula. Suppose you have a sample with
𝑛 = 100 observations and want a 95% confidence interval for the regression
slope. You estimate a slope of 𝑏1 = 0.3 and get a standard error of 𝑠𝑏1

= 0.1.
We look up the quantile of the Student’s 𝑡 distribution and obtain 𝑡1− 𝛼

2 ,𝑛−2 =
𝑡0.975,98 = 1.984. To get this quantile in R we can use the qt() function:

qt(0.975, 98)

[1] 1.984467

We then use the formula:

𝑏1 ± 𝑡1− 𝛼
2 ,𝑛−2 × 𝑠𝑏1

0.3 ± 1.984 × 0.1
0.3 ± 0.1984

The confidence interval is then [0.102, 0.498]. We are 95% confident that the
population regression slope 𝛽1 is between 0.102 and 0.498. The entire confidence
interval is above zero so we are 95% confident that 𝑋 has an effect on 𝑌 . That
is, the confidence interval does not contain zero, so we are 95% confidence that
𝛽1 ≠ 0.

Graphically the confidence interval is the width of the shaded blue area around
the sample estimate at the red line:

library(ggplot2)
df <- data.frame(x = 0.3 + 0.1*qt(seq(0.001, 0.999, by = 0.001), 98))
df$y <- dt(qt(seq(0.001, 0.999, by = 0.001), 98), 98)
ci <- qt(0.975, 98) * 0.1
df$fill <- ifelse(df$x > 0.3 - ci & df$x < 0.3 + ci, df$x, NA)
ggplot(df, aes(x, y)) +
geom_line() +
xlab("") +
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ylab("") +
geom_area(aes(x = fill), fill = "blue", alpha = 0.2) +
geom_vline(xintercept = 0.3, color = "red", alpha = 0.5) +
theme_minimal()
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The shaded blue area under the curve represents 95% of the total area. The
white areas in the tails each make up 2.5% of the area.

9.4.3 Confidence Intervals in R
R has a built-in function to easily calculate confidence intervals called
confint(). We can use it as follows to get a 95% confidence interval for both
𝑏0 and 𝑏1:

df <- read.csv("advertising-sales.csv")
m <- lm(sales ~ advertising, data = df)
confint(m, level = 0.95)

2.5 % 97.5 %
(Intercept) 3.37824898 5.10780745
advertising 0.04477913 0.05259663

We are 95% confident that the population intercept 𝛽0 is between 3.3782 and
5.1078 and we are 95% confident that the population slope 𝛽1 is between 0.0448
and 0.0526. The entire confidence interval for the slope is above zero so we are
95% confidence that advertising does have an effect on sales (i.e. 𝛽1 ≠ 0).

If we only want to get the confidence interval for the slope and not the intercept
we can specify the parameter we want to get:

confint(m, parm = "advertising", level = 0.95)
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2.5 % 97.5 %
advertising 0.04477913 0.05259663

We could alternatively save the confidence interval to an object (let’s call it ci)
and extract elements from it. Suppose I wanted to get just the lower bound of
the confidence interval for the slope:

ci <- confint(m, level = 0.95)
ci[2, 1]

[1] 0.04477913

9.4.4 Manually Calculating Confidence Intervals in R
Finally, let’s check that using the mathematical formula for the confidence in-
terval directly gives the same results as using confint().

b_1 <- coef(summary(m))["advertising", "Estimate"]
s_b_1 <- coef(summary(m))["advertising", "Std. Error"]
c(b_1 - qt(0.975, 198) * s_b_1,
b_1 + qt(0.975, 198) * s_b_1)

[1] 0.04477913 0.05259663

We get the same results as above!
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SLR Hypothesis Testing

We will now learn how to do hypothesis tests for the regression slope. Like
confidence intervals, it is very similar to performing hypothesis tests for the
sample mean that you learned about in Statistics 1. We will first show the
theory behind hypothesis testing for the regression slope. We will then show a
numeric example before finally showing how to perform hypothesis tests in R.

10.1 Notation
Suppose we wanted to test if 𝛽1 was different to some number 𝑏. For example, if
we wanted to test if the slope was not equal to one (i.e. 𝛽1 ≠ 1), then we would
have 𝑏 = 1. We call this number 𝑏 the hinge. If we are testing if 𝛽1 ≠ 𝑏, we set
up the null and alternative hypotheses as follows:

• Null hypothesis: 𝐻0 ∶ 𝛽1 = 𝑏
• Alternative hypothesis: 𝐻1 ∶ 𝛽1 ≠ 𝑏

If we are testing a claim like “𝛽1 is not equal to 𝑏” then that is referring to the
alternative hypothesis. The null hypothesis is then always the exact opposite of
the alternative hypothesis.

This type of test is called a two-sided test because the values of 𝛽1 in the
alternative hypothesis are on two sides of the null hypothesis.

Denote by 𝐵1 the random variable that estimates 𝛽1 for any random sample
drawn from the population. This 𝐵1 is not the regression output for our dataset
(our observed sample) in R - that is 𝑏1. Nor is it the true population slope we
are trying to estimate - this is 𝛽1. Instead 𝐵1 is a theoretical object that maps
a hypothetical random sample that we could draw from the population into an
estimate of 𝛽1.

When we have a dataset, we have exactly one random sample drawn from the

61
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population and our estimate of 𝛽1 from this is 𝑏1. But in principle we could
draw another random sample from the population and get a different estimate
of 𝛽1. We can think of the possible values of 𝐵1 as all the possible values of
estimates of 𝛽1 from different random samples from the population. While 𝑏1
is observed and fixed (because we have observed our sample and estimated the
slope), 𝐵1 is neither observed nor fixed: it’s a random variable. The estimate
𝑏1 we get from our observed dataset in R is a single realization of this random
variable.

So to summarize:

• 𝛽1 is the population regression slope (unobserved and fixed).
• 𝑏1 is the estimated regression slope with our data (observed and fixed).
• 𝐵1 is the random variable that estimates the slope for any random sample

(unobserved and a random variable).

We similarly denote by 𝑆𝐵1
the random variable that estimates the standard

error of the regression slope for any random sample drawn from the population.

10.2 Test Statistic
We will not show the steps but it can be proven mathematically from our model
assumptions that:

𝑇 = 𝐵1 − 𝛽1
𝑆𝐵1

∼ 𝑡𝑛−2

This means that 𝑇 follows a 𝑡 distribution with 𝑛−2 degrees of freedom. This 𝑇
is also a random variable, because it is a function of two other random variables
(𝐵1 and 𝑆𝐵1

and a constant parameter 𝛽1). This formulation is very useful
because 𝑇 has a distribution that does not depend on any unknown parameters.
There is no unknown mean or variance for this distribution: it only depends on
𝑛 which we know. We call 𝑇 a pivot because it follows a distribution that does
not depend on unknown parameters.

Now, if the null hypothesis is true (𝛽1 = 𝑏), then it is the case that:

𝑇 = 𝐵1 − 𝑏
𝑆𝐵1

∼ 𝑡𝑛−2

So if the null hypothesis were true, then samples drawn from the population
should produce values of 𝑇 that follow this distribution. Denote by small 𝑡
the realized value of 𝑇 from our sample. We calculate this using the formula
𝑡 = 𝑏1−𝑏

𝑠𝑏1
. If the null hypothesis is true, most of the time we should get values

of 𝑡 close to zero, but occasionally (about 5% of the time) we could get more
extreme values further away from zero (like greater than +2 or less than −2).

How can we use this to test our hypothesis? If we calculate 𝑡 from our observed
sample and find that the value is extreme (like greater than +2 or less than −2),
then there are 2 possibilities:
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• The null hypothesis is true and the sample we observed was a rare case of
getting an extreme value of 𝑡.

• The null hypothesis is false.

Because the first possibility is rare, then it is more likely that the second possi-
bility holds: it is likely that the null hypothesis is false. Of course it could be
possible that the null hypothesis is true and we just observed a freak event. We
can’t tell these apart. However, it’s much more likely that the null hypothesis
is false. So if we find that what we observe in our sample to be extremely rare if
the null hypothesis were true, then we conclude that the null hypothesis is false.
If we find values in the normal range of the null hypothesis we instead conclude
that we have no evidence to say the null hypothesis is false.

10.3 Size of the Test
How do we decide whether to reject the null hypothesis or not based on the
realized value of 𝑇 ? We first have to decide on the size of the test. This is the
highest probability that we are willing to accept that we might falsely reject
the null hypothesis when it is in fact true. The most common size you see is
5%, but sometimes people use 1% or 10%. The size of the test is denoted by 𝛼,
where a 5% size is denoted by 𝛼 = 0.05. With 𝛼 = 0.05, there is a 5% chance
that we reject null hypothesis when it is in fact true. But that means that 95%
of the time we reject the null it is in fact false.

Once we have decided on the size of the test there are two possible ways to
proceed, both yielding the same conclusion:

1. The critical value approach (also called the rejection region approach).
2. The 𝑝-value approach.

Let’s discuss each of these in turn.

10.4 Critical Value Approach for a Two-Sided
Test

The critical value approach involves finding a number 𝑐 that solves the equation:

Pr(|𝑇 | ≥ 𝑐) = 𝛼 under 𝐻0

In words this means the probability that the absolute value of 𝑇 = 𝐵1−𝑏
𝑆𝐵1

from
any sample being larger than 𝑐 is equal to 𝛼 under the null hypothesis. So if
𝛼 = 0.05, under the null hypothesis the probability of getting a value of |𝑇 |
larger than the critical value is 5%.

The 𝑐 that solves this equation is 𝑡1− 𝛼
2 ,𝑛−2, the same quantile from the 𝑡 distri-

bution that we we use for a (1 − 𝛼)% confidence interval. With 𝛼 = 0.05, this
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is the 97.5th quantile of the 𝑡 distribution with 𝑛 − 2 degrees of freedom.

With this number we compare the realized value of 𝑇 , 𝑡 = 𝑏1−𝑏
𝑠𝑏1

to this critical
value 𝑡1− 𝛼

2 ,𝑛−2:

• If |𝑡| ≥ 𝑡1− 𝛼
2 ,𝑛−2 we reject the null hypothesis.

• If |𝑡| < 𝑡1− 𝛼
2 ,𝑛−2 we fail to reject the null hypothesis.

Graphically, we calculate 𝑡 and check if the value lies in one of the shaded regions
below:

library(ggplot2)
df <- data.frame(x = qt(seq(0.001, 0.999, by = 0.001), 98))
df$y <- dt(qt(seq(0.001, 0.999, by = 0.001), 98), 98)
cv <- qt(0.975, 98)
df$fill_1 <- ifelse(df$x < -cv, df$x, NA)
df$fill_2 <- ifelse(df$x > cv, df$x, NA)
ggplot(df, aes(x, y)) +
geom_line() +
xlab("") +
ylab("") +
geom_area(aes(x = fill_1), fill = "blue", alpha = 0.2) +
geom_area(aes(x = fill_2), fill = "blue", alpha = 0.2) +
geom_vline(xintercept = -cv, color = "red", alpha = 0.5) +
geom_vline(xintercept = cv, color = "red", alpha = 0.5) +
theme_minimal()
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The area of the shaded region is exactly 5% of the total area with 𝛼 = 0.05 (2.5%
on the left and 2.5% on the right). This is the same as with a confidence interval.
If the realized value of the test statistic 𝑡 is in the shaded area, then such a value
is unlikely to occur if the null hypothesis is true (occurs with probability 5%).
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We therefore would reject the null. If the realized value 𝑡 is in between the two
red lines, then the value is not extreme under the null hypothesis and we fail to
reject the null hypothesis.

10.5 𝑝-Value Approach for a Two-Sided Test
The other approach is the 𝑝-value approach. This approach involves finding a
number 𝑝 that solves the equation:

Pr(|𝑇 | ≥ |𝑡|) = 𝑝 under 𝐻0

In words: under 𝐻0, the probability that the absolute value of 𝑇 = 𝐵1−𝑏
𝑆𝐵1

from
any sample being larger than the absolute value of the observed realization of 𝑡
is equal to 𝑝. It is probability of drawing a sample from the population that is
more extreme than the observed one under the null hypothesis.

This 𝑝 can be calculated with:

𝑝 = 2 × (1 − Pr(𝑇 < |𝑡|))

We then compare this number 𝑝 with the size of the test 𝛼:

• If 𝑝 ≤ 𝛼 we reject the null hypothesis.
• If 𝑝 > 𝛼 we fail to reject the null hypothesis.

Graphically, if we calculate 𝑡 = 1, then the 𝑝-value is the area to the right of 1
and to the left of −1:

library(ggplot2)
df <- data.frame(x = qt(seq(0.001, 0.999, by = 0.001), 98))
df$y <- dt(qt(seq(0.001, 0.999, by = 0.001), 98), 98)
t <- 1
df$fill_1 <- ifelse(df$x < -t, df$x, NA)
df$fill_2 <- ifelse(df$x > t, df$x, NA)
ggplot(df, aes(x, y)) +
geom_line() +
xlab("") +
ylab("") +
geom_area(aes(x = fill_1), fill = "blue", alpha = 0.2) +
geom_area(aes(x = fill_2), fill = "blue", alpha = 0.2) +
geom_vline(xintercept = t, color = "red", alpha = 0.5) +
theme_minimal()
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With a sample size of 𝑛 = 100 (98 degrees of freedom), using the formula

𝑝 = 2 × (1 − Pr(𝑇 < |𝑡|)) = 2 × (1 − Pr(𝑇 < 1))

the 𝑝-value is equal to:

2 * (1 - pt(1, 98))

[1] 0.3197733

The function pt(t, n-2) is the R function for Pr(𝑇 < 𝑡) with a 𝑡 distribution
with 𝑛 − 2 degrees of freedom. The shaded blue area is thus 31.97% of the total
area. The probability of observing a a sample at least as extreme as 𝑡 = 1 is
31.97%. Because this probability is bigger than 5% we would fail to reject the
null hypothesis.

Note that we always end up with the same rejection decision using the critical
value approach and the 𝑝-value approach. If you do both and end up with
different answers, then you know something has gone wrong.

10.6 Making a Conclusion
Once we have rejected or failed to reject the null hypothesis we need to make a
conclusion about the initial claim:

• If we reject null hypothesis we conclude that there is sufficient evidence
for the claim.

• If we fail to reject, we say there is insufficient evidence for the claim.

If we fail to reject a null hypothesis, we never actually accept the null hypothesis.
We just say there is not enough evidence to reject it.
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To see why we do this, suppose we had a very small sample size (like 𝑛 = 5).
With such little data our estimate of 𝛽1 would be very imprecise, leading to a
large standard error 𝑠𝑏1

. This would lead to a very small value of 𝑡 = 𝑏1−𝑏
𝑠𝑏1

even
if the null hypothesis is actually false. We would end up failing to reject the
null hypothesis because of the small 𝑡. To conclude then the null hypothesis is
true from a handful of observations would be very naive. Instead, we just don’t
have enough evidence to say that it is false.

10.7 One-Sided Tests
10.7.1 Hypotheses
If the claim we want to test is “𝛽1 is larger than 𝑏” or “𝛽1 is smaller than 𝑏”,
then we need to use a one-sided test. These can be either upper-tail or lower-tail
tests:

• “𝛽1 is larger than 𝑏” ⇒ Upper-tail test.
• “𝛽1 is smaller than 𝑏” ⇒ Lower-tail test.

In these cases, the null and alternative hypotheses are:

• Upper-tail test: 𝐻0: 𝛽1 ≤ 𝑏, 𝐻1: 𝛽1 > 𝑏
• Lower-tail test: 𝐻0: 𝛽1 ≥ 𝑏, 𝐻1: 𝛽1 < 𝑏

Notice that the claim corresponds to the alternative hypothesis. For example,
if the claim is “𝛽1 is larger than 𝑏”, then this is an upper-tail test and the
alternative hypothesis corresponds to the claim: 𝛽1 > 𝑏. The null hypothesis
is then just the opposite of the alternative hypothesis. When you are asked
to perform a one-sided test you should therefore write down the alternative
hypothesis first (which corresponds to the claim you need to test) and then
write the null hypothesis as the opposite of this.

10.7.2 Test Statistics
For a one-sided test, the test statistic is the same as before. Under the null
hypothesis:

𝑇 = 𝐵1 − 𝑏
𝑆𝐵1

∼ 𝑡𝑛−2

We also calculate the realized value of the test statistic in our sample the same
way:

𝑡 = 𝑏1 − 𝑏
𝑠𝑏1

10.7.3 Critical Values
The critical value for an upper-tail test is the value 𝑐 that solves:
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Pr(𝑇 ≥ 𝑐) = 𝛼

It is the number 𝑐 such that under 𝐻0 the probability that 𝑇 exceeds it is equal
to 𝛼. This is different from the two-sided test because we don’t use the absolute
value. The critical value here is equal to 𝑡1−𝛼,𝑛−2. Notice that we find the 1 − 𝛼
quantile, and not 1 − 𝛼

2 quantile as in the two-sided test.

Graphically, an upper-tail test with the critical value approach involves checking
if 𝑡 in our sample is in the shaded region below:

library(ggplot2)
df <- data.frame(x = qt(seq(0.001, 0.999, by = 0.001), 98))
df$y <- dt(qt(seq(0.001, 0.999, by = 0.001), 98), 98)
cv <- qt(0.95, 98)
df$fill <- ifelse(df$x > cv, df$x, NA)
ggplot(df, aes(x, y)) +
geom_line() +
xlab("") +
ylab("") +
geom_area(aes(x = fill), fill = "blue", alpha = 0.2) +
geom_vline(xintercept = cv, color = "red", alpha = 0.5) +
theme_minimal()
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With 𝛼 = 0.05, the shaded region has an area of 5%.

The critical value for an lower-tail test is the value 𝑐 that solves:

Pr(𝑇 ≤ 𝑐) = 𝛼
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It is the number 𝑐 such that under 𝐻0 the probability that 𝑇 is smaller than
𝑐 is equal to 𝛼. The critical value here is equal to 𝑡𝛼,𝑛−2. This is always
equal to −𝑡1−𝛼,𝑛−2, the negative of the equivalent upper-tail test critical value.
Graphically, an lower-tail test with the critical value approach involves checking
if 𝑡 in our sample is in the shaded region below:

library(ggplot2)
df <- data.frame(x = qt(seq(0.001, 0.999, by = 0.001), 98))
df$y <- dt(qt(seq(0.001, 0.999, by = 0.001), 98), 98)
cv <- -qt(0.95, 98)
df$fill <- ifelse(df$x < cv, df$x, NA)
ggplot(df, aes(x, y)) +
geom_line() +
xlab("") +
ylab("") +
geom_area(aes(x = fill), fill = "blue", alpha = 0.2) +
geom_vline(xintercept = cv, color = "red", alpha = 0.5) +
theme_minimal()
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Again, with 𝛼 = 0.05, the shaded region has an area of 5%.

10.7.4 𝑝-Values
To get the 𝑝-value for a one-sided test we need to find the probability of obtaining
a 𝑇 at least as extreme as the observed 𝑡 in the direction of the test. For an
upper-tail test this is the area under the distribution of 𝑇 to the right of 𝑡:

𝑝 = Pr(𝑇 ≥ 𝑡) = 1 − Pr(𝑇 < 𝑡)
Graphically, if we calculate 𝑡 = 1, then the 𝑝-value is the area to the right of 1:
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library(ggplot2)
df <- data.frame(x = qt(seq(0.001, 0.999, by = 0.001), 98))
df$y <- dt(qt(seq(0.001, 0.999, by = 0.001), 98), 98)
t <- 1
df$fill <- ifelse(df$x > t, df$x, NA)
ggplot(df, aes(x, y)) +
geom_line() +
xlab("") +
ylab("") +
geom_area(aes(x = fill), fill = "blue", alpha = 0.2) +
geom_vline(xintercept = t, color = "red", alpha = 0.5) +
theme_minimal()
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With a sample size of 𝑛 = 100 (98 degrees of freedom), using the formula

𝑝 = 1 − Pr(𝑇 < 𝑡) = 1 − Pr(𝑇 < 1)
the 𝑝-value is equal to:

1 - pt(1, 98)

[1] 0.1598866

The shaded blue area is thus 15.989% of the total area. The probability of
observing a a sample at least as extreme as 𝑡 = 1 in the direction of the test is
15.989%. Because this probability is bigger than 5% we would fail to reject the
null hypothesis.

For a lower-tail test the 𝑝-value is the area in the distribution of 𝑇 to the left
of 𝑡:

𝑝 = Pr(𝑇 ≤ 𝑡)
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Graphically, if we calculate 𝑡 = 1, then the 𝑝-value is the area to the left of 1:

library(ggplot2)
df <- data.frame(x = qt(seq(0.001, 0.999, by = 0.001), 98))
df$y <- dt(qt(seq(0.001, 0.999, by = 0.001), 98), 98)
t <- 1
df$fill <- ifelse(df$x < t, df$x, NA)
ggplot(df, aes(x, y)) +
geom_line() +
xlab("") +
ylab("") +
geom_area(aes(x = fill), fill = "blue", alpha = 0.2) +
geom_vline(xintercept = t, color = "red", alpha = 0.5) +
theme_minimal()
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With a sample size of 𝑛 = 100 (98 degrees of freedom), using the formula

𝑝 = Pr(𝑇 ≤ 𝑡) = Pr(𝑇 ≤ 1)

the 𝑝-value is equal to:

pt(1, 98)

[1] 0.8401134

The shaded blue area is thus 84.01% of the total area. The probability of
observing a a sample at least as extreme as 𝑡 = 1 in the direction of the test is
84.01%. Because this probability is bigger than 5% we would fail to reject the
null hypothesis.
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10.8 Recap
10.8.1 Critical Value Approach
We first decide which type of test we need to use:

• If the claim is “𝛽1 is different from 𝑏” we use a two-sided test.
• If the claim is “𝛽1 is greater than 𝑏” we use an upper-tail test.
• If the claim is “𝛽1 is less than 𝑏” we use a lower-tail test.

We then set up the null and alternative hypotheses:

• Two-sided test: 𝐻0: 𝛽1 = 𝑏, 𝐻1: 𝛽1 ≠ 𝑏
• Upper-tail test: 𝐻0: 𝛽1 ≤ 𝑏, 𝐻1: 𝛽1 > 𝑏
• Lower-tail test: 𝐻0: 𝛽1 ≥ 𝑏, 𝐻1: 𝛽1 < 𝑏

We then form the test statistic. Under the null hypothesis:

𝑇 = 𝐵1 − 𝑏
𝑆𝐵1

∼ 𝑡𝑛−2

We calculate the realized value of the test statistic using our sample:

𝑡 = 𝑏1 − 𝑏
𝑠𝑏1

We then calculate the critical value and form rejection rules:

• Two-sided test: Reject if |𝑡| ≥ 𝑡1− 𝛼
2 ,𝑛−2 otherwise fail to reject.

• Upper-tail test: Reject if 𝑡 ≥ 𝑡1−𝛼,𝑛−2 otherwise fail to reject.
• Lower-tail test: Reject if 𝑡 ≤ 𝑡𝛼,𝑛−2 otherwise fail to reject.

Based on whether we reject or not, we make a conclusion about the initial claim.

10.8.2 𝑝-Value Approach
We first decide which type of test we need to use:

• If the claim is “𝛽1 is different from 𝑏” we use a two-sided test.
• If the claim is “𝛽1 is greater than 𝑏” we use an upper-tail test.
• If the claim is “𝛽1 is less than 𝑏” we use a lower-tail test.

We then set up the null and alternative hypotheses:

• Two-sided test: 𝐻0: 𝛽1 = 𝑏, 𝐻1: 𝛽1 ≠ 𝑏
• Upper-tail test: 𝐻0: 𝛽1 ≤ 𝑏, 𝐻1: 𝛽1 > 𝑏
• Lower-tail test: 𝐻0: 𝛽1 ≥ 𝑏, 𝐻1: 𝛽1 < 𝑏

We then form the test statistic. Under the null hypothesis:

𝑇 = 𝐵1 − 𝑏
𝑆𝐵1

∼ 𝑡𝑛−2
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We calculate the realized value of the test statistic using our sample:

𝑡 = 𝑏1 − 𝑏
𝑠𝑏1

We then calculate the 𝑝-value:

• Two-sided test: 𝑝 = 2 × (1 − Pr(𝑇 < |𝑡|)).
• Upper-tail test: 𝑝 = 1 − Pr(𝑇 < 𝑡).
• Lower-tail test: 𝑝 = Pr(𝑇 ≤ 𝑡).

We reject if 𝑝 ≤ 𝛼 otherwise we fail to reject.

Based on whether we reject or not, we make a conclusion about the initial claim.

10.9 Numeric Example
You have a sample with 𝑛 = 100 observations and you estimate 𝑏1 = 0.3 and
𝑠𝑏1

= 0.1. You want to test the claim 𝛽1 > 0.2 with a 𝑝-value approach with
𝛼 = 0.05.

Solution:

This is an upper-tail test. The null and alternative hypotheses are:

• 𝐻0: 𝛽1 ≤ 0.2
• 𝐻1: 𝛽1 > 0.2.

Under 𝐻0:

𝑇 = 𝐵1 − 0.2
𝑆𝐵1

∼ 𝑡98

The value of the test statistic is:

𝑡 = 𝑏1 − 𝑏
𝑠𝑏1

= 0.3 − 0.2
0.1 = 1

The 𝑝-value is 𝑝 = Pr (𝑇 ≥ 1). We calculate this in R with:

1 - pt(1, 98)

[1] 0.1598866

Conclusion: 𝑝 = 0.16 > 𝛼 = 0.05 so we cannot reject 𝐻0. There is no evidence
that 𝛽1 > 0.2 at the 5% level.
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10.10 Hypothesis Tests in R
Using the advertising and sales data, you are asked to test the following claim
at the 5% level: “An increase in advertising of €1,000 on average increases sales
by more than €48,000.”

This is an upper-tail test. Recall that advertising is in thousands and sales is in
millions. The claim is 1 unit of 𝑥 increases 𝑦 by 48,000

1,000,000 = 0.048 units. Thus,
the claim is equivalent to testing if 𝛽1 > 0.048. With this we can form the null
and alternative hypotheses:

• 𝐻0: 𝛽1 ≤ 0.048
• 𝐻1: 𝛽 > 0.48.

We form the test statistic. Under 𝐻0:

𝑇 = 𝐵1 − 0.048
𝑆𝐵1

∼ 𝑡198

We now calculate the value of the test statistic in R:

df <- read.csv("advertising-sales.csv")
m <- lm(sales ~ advertising, data = df)
b_1 <- coef(summary(m))["advertising", "Estimate"]
s_b_1 <- coef(summary(m))["advertising", "Std. Error"]
(t <- (b_1 - 0.048) / s_b_1) # value of the test statistic

[1] 0.3470444

(cv <- qt(0.95, 198)) # critical value

[1] 1.652586

(pval <- 1 - pt(t, 198)) # p-value

[1] 0.3644633

We reject if 𝑡 ≥ 𝑡1−𝛼,𝑛−2 with the critical value approach and we reject if 𝑝 ≤ 𝛼
with the 𝑝-value approach:

t > cv

[1] FALSE

pval < 0.05

[1] FALSE

Both are FALSE, so we fail to reject 𝐻0 under both approaches.

There is no evidence for the claim that increasing advertising by €1,000 increases
sales by more than €48,000 at the 5% level.
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10.11 Summary of R Functions for Hypothesis
Tests

Define the following:

• The size of the test, 𝛼, is alpha.
• The number of observations in the regression, 𝑛, is n.
• The value of the test statistic, 𝑡, is t.

Critical Values:

• If two-sided test: qt(1-alpha/2, n-2).
• If upper-tail test: qt(1-alpha, n-2).
• If lower-tail test: qt(alpha, n-2).

𝑝-values:

• If two-sided test: 2*(1-pt(abs(t), n-2)).
• If upper-tailed test: 1-pt(t, n-2).
• If lower-tailed test: pt(t, n-2).
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Chapter 11

SLR Statistical Significance

11.1 Test for Model Usefulness
We will now discuss a particular hypothesis test for the regression slope that
is so common it has its own name: a test for statistical significance. This is a
two-sided test for the regression slope with a zero hinge (𝑏 = 0):

𝐻0 ∶ 𝛽1 = 0 𝐻1 ∶ 𝛽1 ≠ 0

Recall that the model is:

𝔼[𝑌𝑖|𝑥𝑖] = 𝛽0 + 𝛽1𝑥𝑖

Under the null hypothesis, the model is simply 𝔼[𝑌𝑖|𝑥𝑖] = 𝛽0. The expected
value of 𝑌𝑖 does not depend on 𝑥𝑖. The model trying to predict 𝑌𝑖 using 𝑥𝑖 is
completely useless. Under the alternative hypothesis, 𝔼[𝑌𝑖|𝑥𝑖] = 𝛽0 + 𝛽1𝑥𝑖 with
𝛽1 ≠ 0 so 𝑌𝑖 varies with 𝑥𝑖 and the model is useful (at least to some degree).

Therefore this test is a test of model usefulness. If we reject 𝐻0 at the 5% level
we say the model is useful at the 5% level.

• If 𝐻0 is rejected, we say the variable X is significant and 𝑏1 is significantly
different from zero.

• If 𝐻0 is not rejected, we say the variable X is insignificant and 𝑏1 is not
significantly different from zero.

Because this test is so common, most statistical software (including R) that
estimate the simple linear regression model provide test statistics and 𝑝-values
for this test by default. We will see this in the next example.

77
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11.2 Example in R
Let’s test for model usefulness using the advertising and sales data. We will
see that the summary() command provides the test statistic and 𝑝-value for this
test by default:

df <- read.csv("advertising-sales.csv")
m <- lm(sales ~ advertising, data = df)
summary(m)

Call:
lm(formula = sales ~ advertising, data = df)

Residuals:
Min 1Q Median 3Q Max

-8.0546 -1.3071 0.1173 1.5961 7.1895

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.243028 0.438525 9.676 <2e-16 ***
advertising 0.048688 0.001982 24.564 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.6 on 198 degrees of freedom
Multiple R-squared: 0.7529, Adjusted R-squared: 0.7517
F-statistic: 603.4 on 1 and 198 DF, p-value: < 2.2e-16

If were to calculate the value of the test statistic from our sample manually, we
would calculate it from 𝑏1 and 𝑠𝑏1

using:

𝑡 = 𝑏1 − 0
𝑠𝑏1

= 0.048688 − 0
0.001982

Let’s calculate this in R:

b_1 <- coef(summary(m))["advertising", "Estimate"]
s_b_1 <- coef(summary(m))["advertising", "Std. Error"]
b_1 / s_b_1

[1] 24.56369

Looking back at the summary() output we see that under t value and across
from advertising in the summary() also has this number (rounded to 3 digits
after the decimal). The summary() command for a regression model always
shows the test statistic for a two-sided test with a zero hinge (the test for
statistical significance).

Let’s compare this to the critical value for 𝛼 = 0.05:
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qt(0.975, 198)

[1] 1.972017

The value of the test statistic 24.564 is greater than the critical value 1.972, so
advertising is statistically significant at the 5% level.

The summary() table also shows the corresponding 𝑝-value for this test in the
4th column. The <2e-16 means that the number is very very close to zero.
2e-16 here means the number 2 divided by a very large number (a 1 followed
by 16 zeros). The <2e-16 means that the 𝑝-value is smaller than this number.
Thus the 𝑝-value is close to zero, so advertising is statistically significant at the
5% level (𝑝 < 0.05).

11.3 Significance Stars
The summary() command also shows some *** after the 𝑝-value and below the
coefficients table it shows Signif. codes. This indicates that 3 stars means
the 𝑝-value is less than 0.001. Here is what all the stars would mean:

• 3 stars (***): 𝑝-value is between 0 and 0.001.
• 2 stars (**): 𝑝-value is between 0.001 and 0.01.
• 1 star (*): 𝑝-value is between 0.01 and 0.05.
• 1 dot (.): 𝑝-value is between 0.05 and 0.1.
• No star/dot: 𝑝-value is between 0.01 and 1.

In the example above, both the intercept and the slope have 3 stars because the
𝑝-value for the hypothesis test that the coefficient is different from zero is close
to zero in both cases.

The purpose of these stars is for you to be able to quickly see which estimates
are significantly different from zero.
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Chapter 12

SLR Quantifying Model
Usefulness

In Chapter 11 we learned how to test if the model was useful or useless. But we
also want to be able to quantify the usefulness of the model. That is, we want
to say how much of the variation in the 𝑌 -variable we can explain with the 𝑋
variable.

We do this by comparing the model error before estimating the regression model
to the model error after estimating the regression model.

12.1 Total Sum of Squares
Without a regression model, the best way to predict values 𝑦𝑖 is to use the
sample mean ̄𝑦. If we do this the sum of squared errors before the regression is

𝑆𝑆𝑇 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2

This is the sum of the squared difference between the actual value of 𝑦𝑖 and the
predicted value (without the model). We call this the 𝑆𝑆𝑇 , the total sum of
squares.

With a regression model, we would predict 𝑦𝑖 using the corresponding value 𝑥𝑖
and use ̂𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖 to predict 𝑦𝑖. As we already learned in Chapter 9, the
sum of squared errors (𝑆𝑆𝐸) is:

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2
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Graphically the 𝑆𝑆𝑇 is the sum of squared deviations from the sample mean ̄𝑦
(the horizontal line) and the 𝑆𝑆𝐸 is the sum of squared deviations from ̂𝑦 (the re-

gression line):

12.2 Sum of Squares Due to Regression
We also define a related 3rd term, the sum of squares due to regression:

𝑆𝑆𝑅 =
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − ̄𝑦)2

This measures the variation explained by the regression model. We will not
show the steps here but it can be shown that:

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2

⏟⏟⏟⏟⏟
=𝑆𝑆𝑇

=
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2

⏟⏟⏟⏟⏟
=𝑆𝑆𝐸

+
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − ̄𝑦)2

⏟⏟⏟⏟⏟
=𝑆𝑆𝑅

This means that 𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅 always.

12.3 Coefficient of Determination: 𝑅 squared
The coefficient of determination, also called 𝑅 squared, is given by:

𝑅2 = 𝑆𝑆𝑅
𝑆𝑆𝑇 = 1 − 𝑆𝑆𝐸

𝑆𝑆𝑇
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The 𝑅2 is always between 0 and 1 and measures the proportion of the variation
in the 𝑌 data explained by the 𝑋 data:

• If 𝑅2 is small (close to 0), the model only explains a small amount of the
variation in 𝑦-data.

• If 𝑅2 is large (close to 1), the model explains a lot of the variation in
𝑦-data.

For example, if 𝑅2 = 0.75, then the model explains 75% of the variation in the
𝑦-data and 25% is left unexplained.

This can also be explained by considering the two extreme cases:

• Imagine our model was completely useless (𝑏1 = 0). Then our best pre-
dictor for 𝑦𝑖 is the sample mean: ̂𝑦𝑖 = ̄𝑦. In this case 𝑆𝑆𝑅 = 0 and
𝑆𝑆𝐸 = 𝑆𝑆𝑇 . The 𝑅2 is then equal to 𝑅2 = 𝑆𝑆𝑅

𝑆𝑆𝑇 = 0
𝑆𝑆𝑇 = 0.

• Imagine our model was completely perfect and we could perfectly predict
𝑦𝑖 with 𝑥𝑖. Then the residuals 𝑒𝑖 would all be zero and the sum of squared
errors would be zero (𝑆𝑆𝐸 = 0). Then the 𝑅2 would be 𝑅2 = 1 − 𝑆𝑆𝐸

𝑆𝑆𝑇 =
1 − 0

𝑆𝑆𝑇 = 1.

In general we will get an 𝑅2 in between these two extreme cases. When the 𝑅2

is close to zero, the model is close to useless. When the 𝑅2 is close to one, the
model is very useful (close to perfect).

For the simple linear regression model, it turns out that the 𝑅2 is the same as
the square of the sample correlation coefficient 𝑟𝑋,𝑌 , so 𝑅2 = 𝑟2

𝑋,𝑌 . This is why
it is called the 𝑅 squared.

12.4 𝑆𝑆𝐸, 𝑆𝑆𝑅 and 𝑆𝑆𝑇 in R
We can use the anova() function to obtain the 𝑆𝑆𝑅, 𝑆𝑆𝑅 and 𝑆𝑆𝑇 in R.
ANOVA here means analysis of variance.

To use this function we first need to estimate a model that tries to explain 𝑌
using only an intercept (so no 𝑋 variable). We can do this in R by replacing
the 𝑋 variable in the lm() function with a 1. Let’s do this and let’s call the
model m1:

df <- read.csv("advertising-sales.csv")
m1 <- lm(sales ~ 1, data = df)
summary(m1)

Call:
lm(formula = sales ~ 1, data = df)

Residuals:
Min 1Q Median 3Q Max
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-12.422 -3.647 -1.123 3.377 12.977

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.0225 0.3689 38.01 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.217 on 199 degrees of freedom

We get a model with only an intercept. It turns out that this intercept is exactly
the same as the sample mean:

mean(df$sales)

[1] 14.0225

This is because if we are only using one parameter to predict 𝑌 , the best one
to use is the mean.

Now we estimate our model that does include an 𝑋 variable. Let’s call this
m2. We then use the anova() function to compare the variability of the errors
before the inclusion of the regressor and afterwards:

m2 <- lm(sales ~ advertising, data = df)
anova(m1, m2)

Analysis of Variance Table

Model 1: sales ~ 1
Model 2: sales ~ advertising
Res.Df RSS Df Sum of Sq F Pr(>F)

1 199 5417.1
2 198 1338.4 1 4078.7 603.37 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the table the 𝑆𝑆𝑇 is 5417.1, under RSS for model 1. RSS here stands for
residual sum of squares, which is another name for the sum of squared errors.
Because model 1 does not include any regressors, the 𝑆𝑆𝑇 is the same as the
residual sum of squares (its 𝑆𝑆𝑅 is zero).

The 𝑆𝑆𝐸 for model 2 (our model of interest) is under RSS and equals 1338.4.
This is the residual sum of squares for model 2, the same as the 𝑆𝑆𝐸.

Finally, the 𝑆𝑆𝑅 is the 4078.7 under Sum of Sq for model 2.

More generally, if Model 1 is a model with our dependent variable and only
a constant and Model 2 is the model with our dependent variable and the
independent variable, the 𝑆𝑆𝑇 , 𝑆𝑆𝐸 and 𝑆𝑆𝑅 in the anova() output are in
the following parts of the table:
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Res.Df RSS Df Sum of Sq

1 𝑛 − 1 𝑆𝑆𝑇
2 𝑛 − 2 𝑆𝑆𝐸 1 𝑆𝑆𝑅

If all you need to get is the 𝑆𝑆𝐸, a faster way is to use the deviance() function
on the regression model. We can confirm that it also gives 1338.4:

m <- lm(sales ~ advertising, data = df)
deviance(m)

[1] 1338.444

We could also just sum the squared residuals from the model as well:

m <- lm(sales ~ advertising, data = df)
sum(m$residuals^2)

[1] 1338.444

Another way to get the 𝑆𝑆𝑇 is to use the formula 𝑆𝑆𝑇 = (𝑛 − 1) 𝑠2
𝑦. To see

where this formula comes from we write the formula for the sample variance:

𝑠2
𝑦 = ∑𝑛

𝑖=1 (𝑦𝑖 − ̄𝑦)2

𝑛 − 1 = 𝑆𝑆𝑇
𝑛 − 1

Multiplying across both sides with (𝑛 − 1) gives the other formula for the 𝑆𝑆𝑇 .
Let’s test it in R:

(nrow(df) - 1) * var(df$sales)

[1] 5417.149

We get the same as above!

We can also calculate it using the formula 𝑆𝑆𝑇 = ∑𝑛
𝑖=1 (𝑦𝑖 − ̄𝑦)2:

sum((df$sales - mean(df$sales))^2)

[1] 5417.149

Again we get the same as above.

Finally, another way to get the 𝑆𝑆𝑅 is to calculate the 𝑆𝑆𝑇 and 𝑆𝑆𝑅 and use
the formula 𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅 to get:

𝑆𝑆𝑅 = 𝑆𝑆𝑇 − 𝑆𝑆𝐸

Let’s confirm that also gives the same answer:

sst <- sum((df$sales - mean(df$sales))^2)
sse <- sum(m$residuals^2)
ssr <- sst - sse
ssr
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[1] 4078.705

12.5 𝑅2 in R
The 𝑅2 is shown in the standard summary() output after Multiple R-squared:

summary(m)

Call:
lm(formula = sales ~ advertising, data = df)

Residuals:
Min 1Q Median 3Q Max

-8.0546 -1.3071 0.1173 1.5961 7.1895

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.243028 0.438525 9.676 <2e-16 ***
advertising 0.048688 0.001982 24.564 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.6 on 198 degrees of freedom
Multiple R-squared: 0.7529, Adjusted R-squared: 0.7517
F-statistic: 603.4 on 1 and 198 DF, p-value: < 2.2e-16

The 𝑅2 is 0.7529.

But we can also obtain the number directly with:

summary(m)$r.squared

[1] 0.7529246

The advertising data explains 75.29% of the variation in the sales data.

Finally, to show that we can get the same using 𝑅2 = 1 − 𝑆𝑆𝐸
𝑆𝑆𝑇 we also calculate

the 𝑅2 manually:

sse <- sum(m$residuals^2)
sst <- sum((df$sales - mean(df$sales))^2)
1 - sse / sst

[1] 0.7529246

We get 0.7529 just like above.



Chapter 13

SLR Prediction Intervals

13.1 Theory
Before we learned how to see what 𝑌 the model predicted for each value of 𝑋
in the data. This was the predicted value:

̂𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖

But we can also use the model to predict a value of 𝑌 for any value of 𝑋, not
only values of 𝑋 in our data.

Suppose we wanted to predict what value 𝑌 would be if the independent variable
was equal to 𝑥𝑝, some value that we choose (and know). Call this value 𝑌𝑝.

The population model says that:

𝑌𝑝 = 𝛽0 + 𝛽1𝑥𝑝 + 𝜀𝑝

There are two different objects we may be interested in from this model:

1. An estimate of 𝔼 [𝑌𝑝|𝑥𝑝], the expected value of the dependent variable
when the independent variable is equal to 𝑥𝑝.

2. A prediction of 𝑌𝑝, our best prediction of the value of the dependent
variable for one observation when the independent variable is equal to 𝑥𝑝.

In our sales and advertising example, the first object could be the average
amount of sales if advertising was equal to 𝑥𝑝 (not in any particular location;
just the average), whereas the second object is the actual value of sales in one
location if advertising was set at 𝑥𝑝.

Now, it turns out that the sample statistic ̂𝑌𝑝 = 𝐵0 + 𝐵1𝑥𝑝 is both the point
estimator of 𝔼 [𝑌𝑝|𝑥𝑝] (the first object) and the point predictor of 𝑌𝑝 (the second
object).

However, the standard errors for these two estimators will be different:
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1. The 95% confidence interval for 𝔼 [𝑌𝑝|𝑥𝑝] should contain the expected
value of 𝑌𝑝 given 𝑥𝑝 with 95% probability.

2. The 95% prediction interval for 𝑌𝑝 should contain the (still unknown)
actual realization of 𝑌𝑝 with 95% probability.

The first object 𝔼[𝑌𝑝|𝑥𝑝] = 𝛽0 + 𝛽1𝑥𝑝 does not contain 𝜀𝑝, whereas 𝑌𝑝 = 𝛽0 +
𝛽1𝑥𝑝 + 𝜀𝑝 does. So the prediction interval for 𝑌𝑝 (which includes the variability
in 𝜀𝑝) should be much wider than the confidence interval for 𝔼 [𝑌𝑝|𝑥𝑝].
We won’t discuss the different formulas for these confidence/prediction intervals
because we will use R to calculate them. However it is important to be aware
why one is wider than the other.

13.2 Example in R
Let’s go back to our advertising and sales dataset to show an example of this.
Suppose we want to predict sales if €100,000 was spent on advertising. We also
want to obtain:

1. A 95% confidence interval for the expected value of sales given this level
of advertising.

2. A 95% prediction interval for the value sales if we advertised at this level
in one market.

If all we were interested in was to get the expectation 𝔼 [𝑌𝑝|𝑥𝑝] or the predicted
value 𝑌𝑝, we do the following. We need to make a small data.frame with
one observation with the appropriate value for 𝑥. We then use the predict()
function in R with our estimated regression model m. Let’s try it out:

df <- read.csv("advertising-sales.csv")
m <- lm(sales ~ advertising, data = df)
df_p <- data.frame(advertising = 100)
predict(m, df_p)

1
9.111816

As we said above, the expectation 𝔼 [𝑌𝑝|𝑥𝑝] and the prediction of 𝑌𝑝 are esti-
mated the same way, so both have the same value. Here, the average value of
sales conditional on €100,000 spent on advertising is €9.11m (our estimate of
[𝑌𝑝|𝑥𝑝 = 100]) and our prediction for what sales would be in one market when
€100,000 advertising is also €9.11m (our prediction ̂𝑌𝑝).

Now, suppose we wanted to get a 95% confidence interval for 𝔼 [𝑌𝑝|𝑥𝑝]. We can
get this by specifying "confidence" in the interval option in the predict()
function. We can set the level using the level option:

df <- read.csv("advertising-sales.csv")
m <- lm(sales ~ advertising, data = df)
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df_p <- data.frame(advertising = 100)
predict(m, df_p, interval = "confidence", level = 0.95)

fit lwr upr
1 9.111816 8.57622 9.647413

This also gives the estimate of 𝔼 [𝑌𝑝|𝑥𝑝] which is 9.111816 (€9.11m). The
interpretation of this interval is as follows: We are 95% confident that in the
population of markets where €100,000 is spent on advertising, the mean value
of sales is between €8.572m and €9.647m.

Now let’s get a 95% prediction interval for 𝑌𝑝. The steps to do this are almost
the same as above. All we need to change is replacing "confidence" with
"prediction" in the interval argument:

df <- read.csv("advertising-sales.csv")
m <- lm(sales ~ advertising, data = df)
df_p <- data.frame(advertising = 100)
predict(m, df_p, interval = "prediction", level = 0.95)

fit lwr upr
1 9.111816 3.956741 14.26689

The interpretation of this interval is as follows: We are 95% confident that if we
spend €100,000 on advertising in one market, the actual value of sales in that
market will be between €3.9567 and €14.2669m.

Notice how this interval is much wider than the previous interval for 𝔼 [𝑌𝑝|𝑥𝑝].
This is because it also includes the variability in 𝜀𝑝 which is not included in the
interval for 𝔼 [𝑌𝑝|𝑥𝑝].



90 CHAPTER 13. SLR PREDICTION INTERVALS



Chapter 14

The Multiple Linear
Regression Model (MLR)

In the previous chapters covering the simple linear regression (SLR) model, we
studied how 𝑌𝑖 depends on a single variable 𝑋𝑖. However, 𝑌𝑖 may depend on
multiple variables 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑘. For example, sales (𝑌𝑖) could depend on on-
line advertising (𝑋𝑖1) and offline advertising (𝑋𝑖2), and each type of advertising
could have a different impact on 𝑌𝑖. We can allow for this with the multiple
linear regression (MLR) model.

We model 𝑌𝑖 as a linear function of 𝑋𝑖1, 𝑋𝑖2, …, 𝑋𝑖𝑘 and and error term:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + … 𝛽𝑘𝑋𝑖𝑘 + 𝜀𝑖

We are going to see that much of what we learned for the simple linear regression
model carries directly over to this model. For example, how to obtain confidence
intervals and how to perform hypothesis tests on a particular parameter 𝛽𝑗.

14.1 Interpretation of the Parameters
14.1.1 Slope Terms
In the simple linear regression model the regression slope was the average in-
crease in the dependent variable from a unit increase in the independent variable.
In the multiple linear regression model this interpretation changes slightly. The
coefficient on the first variable 𝛽1 is now how much the expected value of 𝑌𝑖
increases when 𝑥𝑖1 increases by 1 unit and all other variables remain unchanged.
This last part about all other variables remaining unchanged was not there be-
fore because in the simple linear regression model there were no other variables:
there was just the one variable 𝑋𝑖.
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The expected value of 𝑌𝑖 given each of the 𝑥𝑖1, … 𝑥𝑖𝑘 is:

𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘

If we increase 𝑥𝑖1 by one unit this becomes:

𝔼 [𝑌𝑖|𝑥𝑖1 + 1, 𝑥𝑖2, … , 𝑥𝑖𝑘] = 𝛽0 + 𝛽1 (𝑥𝑖1 + 1) + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘
𝔼 [𝑌𝑖|𝑥𝑖1 + 1, 𝑥𝑖2, … , 𝑥𝑖𝑘] = 𝛽1 + 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘

If we subtract these we see that everything except 𝛽1 cancels:

𝔼 [𝑌𝑖|𝑥𝑖1 + 1, 𝑥𝑖2, … , 𝑥𝑖𝑘] − 𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘] = 𝛽1

So how to interpret 𝛽1 is the left-hand side of this equation: the expected change
in 𝑌𝑖 from a unit increase in 𝑥𝑖1 keep all other variables 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑘 fixed.

Sometimes to say “keeping all other variables fixed” we say “all else equal” or
ceteris paribus, which is Latin for “other things equal”.

We can use the same logic to interpret the coefficients in front of the other
variables. For example, 𝛽2 is the expected change in 𝑌𝑖 from a unit increase in
𝑥𝑖2 keep all other variables 𝑥𝑖1, 𝑥𝑖3, 𝑥𝑖4, … , 𝑥𝑖𝑘 fixed.

14.1.2 Intercept
To interpret the intercept term 𝛽0 we note that when all variables are exactly
equal to zero, 𝑥𝑖1 = 𝑥𝑖2 = ⋯ = 𝑥𝑖𝑘 = 0, we get:

𝔼 [𝑌𝑖|𝑥𝑖1 = 0, 𝑥𝑖2 = 0, … , 𝑥𝑖𝑘 = 0] = 𝛽0 + 𝛽1 × 0 + 𝛽2 × 0 + … 𝛽𝑘 × 0
= 𝛽0

So 𝛽0 is the expected value of the dependent variable when all explanatory
variables take on a value of zero.

With many explanatory variables (large 𝑘), having situations where all explana-
tory variables equal zero simultaneously becomes increasingly rare. Thus usually
the estimate of the intercept 𝛽0 will not make much sense and we won’t pay too
much attention to it. But we will see some situations where it will.

14.2 Estimation of the Parameters
The parameters 𝛽0, 𝛽1, …, 𝛽𝑘 are estimated by minimizing the sum of squared
errors like in the simple linear regression model.

The estimates 𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑘 that we get are the ones that make the term below
as small as possible:

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖1 − 𝑏2𝑥𝑖2 − ⋯ − 𝑏𝑘𝑥𝑖𝑘)2
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The mathematical formulas for 𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑘 involve using matrix algebra so
we will not show the formulas for the estimator here. Instead we will use R to
estimate the model as in the example in the next subsection.

Just like the simple linear regression model, after estimation we obtain the
sample regression line:

̂𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + ⋯ + 𝑏𝑘𝑥𝑖𝑘

where ̂𝑦𝑖 are the predicted values and 𝑒𝑖 are the residuals.

14.3 Example in R
We will now show an example in R. We will move away from the sales and
advertising example dataset because that only has one explanatory variable
(advertising). We will instead use the dataset wages1.csv which contains data
on the hourly wage in dollars, years of education, and years of work experience
for 𝑛 = 526 people. The data are from the National Longitudinal Survey in
the US. We will estimate a model explaining wage (𝑌 ) with education (𝑋1) and
experience (𝑋2).

Estimating the model is almost the same as with the simple linear regression
model. The only thing that changes is that we add more explanatory variables
to the formula in the lm() function using the plus symbol +.

df <- read.csv("wages1.csv")
m <- lm(wage ~ educ + exper, data = df)
summary(m)

Call:
lm(formula = wage ~ educ + exper, data = df)

Residuals:
Min 1Q Median 3Q Max

-5.5532 -1.9801 -0.7071 1.2030 15.8370

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.39054 0.76657 -4.423 0.000011846645 ***
educ 0.64427 0.05381 11.974 < 2e-16 ***
exper 0.07010 0.01098 6.385 0.000000000378 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.257 on 523 degrees of freedom
Multiple R-squared: 0.2252, Adjusted R-squared: 0.2222
F-statistic: 75.99 on 2 and 523 DF, p-value: < 2.2e-16

https://walshc.github.io/stats2/wages1.csv
https://www.nlsinfo.org/content/cohorts/older-and-young-men
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If we had more variables, we would just add these variables separating each by
the plus symbol. For example: y ~ x1 + x2 + x3 + x4. We will see examples
of this in the upcoming chapters.

The sample regression line in our example is:

̂𝑦𝑖 = −3.39 + 0.64𝑥𝑖1 + 0.07𝑥𝑖2

Let’s interpret each of these numbers.

The model predicts that an individual with zero years of education and zero
years of experience will have an hourly wage of −$3.39. This doesn’t make
much sense: who would work for a negative wage? If we check the data, neither
the variable educ nor exper have values that equal zero:

summary(df)

wage educ exper
Min. : 0.530 Min. : 0.00 Min. : 1.00
1st Qu.: 3.330 1st Qu.:12.00 1st Qu.: 5.00
Median : 4.650 Median :12.00 Median :13.50
Mean : 5.896 Mean :12.56 Mean :17.02
3rd Qu.: 6.880 3rd Qu.:14.00 3rd Qu.:26.00
Max. :24.980 Max. :18.00 Max. :51.00

For educ the smallest value is 9. Because we need (several) observations with
values 𝑥𝑖1 = 𝑥𝑖2 = 0 for 𝑏0 to be reliable, we cannot trust this estimate here.

We now move on to interpreting the coefficients in front of the explanatory
variables. All else equal, increasing an individual’s education by 1 year while
holding experience fixed increases the wage by $0.64 on average. All else equal,
increasing an individual’s experience by 1 year while holding education fixed
increases the wage by $0.07 on average.

14.4 Adding and Removing Variables
Suppose now we used the same dataset as above to estimate a model explaining
wage with education only, leaving experience out of the model. We use the
approach we used with the simple linear regression model:

lm(wage ~ educ, data = df)

Call:
lm(formula = wage ~ educ, data = df)

Coefficients:
(Intercept) educ

-0.9049 0.5414
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Now let’s compare the two sample regression equations, the model with experi-
ence included and with experience excluded:

̂𝑦𝑖 = −3.39 + 0.64𝑥𝑖1 + 0.07𝑥𝑖2
̂𝑦𝑖 = −0.90 + 0.54𝑥𝑖1

In the first model, increasing education by 1 year on average increased wages by
$0.64 holding experience fixed. In the second model, increasing education by 1
year on average increased wages by $0.54 (without holding experience fixed).

The effect of education on wages is smaller in the model without experience.
Increasing education by 1 year now only increases wages by $0.54 on average.
Wages depend on experience, so in the simple model experience is included in
𝜀𝑖. But education and experience are negatively correlated:

cor(df$educ, df$exper)

[1] -0.2995418

When education is higher for someone that often means they spent more time
in school/college and got less experience. So when we increase education for
someone and not hold experience fixed, it has a smaller effect on wages because
that usually means that person has less experience. Thus in the simpler model
we have a violation of the 𝔼 [𝜀𝑖|𝑋𝑖] = 0 assumption. The error term which
includes experience is negatively correlated with the education variable. The
negative correlation biases the estimates of 𝛽1 downward. This kind of bias is
called omitted variable bias.

For this reason we prefer models that include more variables that can impact
the 𝑌 variable that are correlated with our 𝑋 variables of interest.
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Chapter 15

MLR Model Assumptions

We now discuss the model assumptions that we require to perform inference,
which we will discuss for the single variable case in the next chapter (Chap-
ter 16). These assumptions are almost the same as the simple linear regression
model, except for assumption 3. For completeness we go through each individual
assumption again here.

15.1 Assumption 1: Linear in Parameters

Assumption 1: Linear in Parameters

In the population model, the dependent variable 𝑌𝑖 is related to the inde-
pendent variables 𝑋𝑖1, … , 𝑋𝑖𝑘 and the error 𝜀𝑖 according to:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑘𝑋𝑖𝑘 + 𝜀𝑖

Again, this assumption means that the process that generates the data in our
sample follows this model. That is, 𝑌𝑖 is linear in 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑘 and the
values 𝑌𝑖 are generated according to the model.

15.2 Assumption 2: Random Sampling

Assumption 2: Random Sampling

We have a random sample of size 𝑛, ((𝑥11, … , 𝑥1𝑘, 𝑦1) , … (𝑥𝑛1, … , 𝑥𝑛𝑘, 𝑦𝑛))
following the population model in Assumption 1.

97
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This assumption means that the sample of data we observe were generated
according to the model 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑘𝑋𝑖𝑘 + 𝜀𝑖. The values of 𝑦𝑖
that we observe are related to the unknown population parameters, observed
𝑥𝑖1, … , 𝑥𝑖𝑘 and the unobserved error 𝜀𝑖 according to 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖,
where 𝜀𝑖 is independent across observation 𝑖.

15.3 Assumption 3: No Perfect Collinearity
This assumption is now different from the SLR model:

Assumption 2: Random Sampling

In the sample, none of the independent variables are constant and there
are no exact linear relationships among the independent variables.

The first part of this assumption is the same as before, holding for each indi-
vidual 𝑥 variable. It requires each variable in the regression to have a standard
deviation greater than zero.

The second part means that we should not be able to write one of the variables
as a linear function of one (or more) of the other variables, holding exactly for
every observation.

We will explain this second part using an example dataset. We will use dataset
clothing-exp.csv which contains data on a random sample of households with
the following variables:

• clothing_exp: Annual clothing expenditure of the household (in €000).
• hh_exp: Annual household income household (in €000).
• num_kids: Number of children in the household.
• hh_size: Total number of people in the household.

Let’s estimate a regression model trying to explain clothing expenditure with
the household size, the number of children and the total number of people in
the household:

df <- read.csv("clothing-exp.csv")
m <- lm(clothing_exp ~ hh_inc + num_kids + hh_size, data = df)
summary(m)

Call:
lm(formula = clothing_exp ~ hh_inc + num_kids + hh_size, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.27225 -0.05878 -0.00765 0.05767 0.43981

https://walshc.github.io/stats2/clothing-exp.csv
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0125930 0.0232879 -0.541 0.589
hh_inc 0.0822021 0.0004423 185.861 <2e-16 ***
num_kids 0.0108057 0.0137232 0.787 0.432
hh_size 0.0119808 0.0116495 1.028 0.305
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1031 on 296 degrees of freedom
Multiple R-squared: 0.9921, Adjusted R-squared: 0.9921
F-statistic: 1.246e+04 on 3 and 296 DF, p-value: < 2.2e-16

For practice, let’s interpret the coefficients from the sample regression equation:

̂𝑦𝑖 = −0.01259 + 0.08220𝑥𝑖1 + 0.01081𝑥𝑖2 + 0.01198𝑥𝑖3

The estimate of the intercept (𝑏0) says that a household with zero income and
nobody in it spends on average −€12.59 per year on clothing. Let’s check the
summary statistics of the explanatory variables:

summary(df)

clothing_exp hh_inc num_kids hh_size
Min. :0.910 Min. :10.90 Min. :0.0000 Min. :1.000
1st Qu.:1.677 1st Qu.:20.50 1st Qu.:0.0000 1st Qu.:2.000
Median :2.270 Median :27.33 Median :0.0000 Median :2.000
Mean :2.531 Mean :30.43 Mean :0.8733 Mean :2.743
3rd Qu.:3.085 3rd Qu.:36.82 3rd Qu.:2.0000 3rd Qu.:4.000
Max. :6.690 Max. :83.38 Max. :5.0000 Max. :7.000

Household income and household size are never zero in the data. Because we
don’t have 𝑥𝑖1 = 𝑥𝑖2 = 𝑥𝑖3 = 0 for any observation, this estimate is not reliable.
It also doesn’t make much sense either, because an unoccupied house does not
have anyone in it to buy clothes (especially if they have no income!).

For 𝑏1, increasing household income by €1,000, holding family composition fixed,
increases clothing expenditure by €82.20 on average. For 𝑏2, increasing the
number of children by 1, holding income and the total household size fixed
(i.e. replacing an adult with a child), increases clothing expenditure by €10.81
on average. For 𝑏3, increasing the household size by 1, holding income and the
number of children fixed (i.e. adding an adult), increases clothing expenditure
by €11.98 on average.

Suppose now we wanted to create a new variable to add to this model: the
number of adults. We can create this variable in R by subtracting the number
of children from the total household size. Let’s try this:

df$num_adults <- df$hh_size - df$num_kids
m <- lm(clothing_exp ~ hh_inc + num_kids + hh_size + num_adults, data = df)
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summary(m)

Call:
lm(formula = clothing_exp ~ hh_inc + num_kids + hh_size + num_adults,

data = df)

Residuals:
Min 1Q Median 3Q Max

-0.27225 -0.05878 -0.00765 0.05767 0.43981

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0125930 0.0232879 -0.541 0.589
hh_inc 0.0822021 0.0004423 185.861 <2e-16 ***
num_kids 0.0108057 0.0137232 0.787 0.432
hh_size 0.0119808 0.0116495 1.028 0.305
num_adults NA NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1031 on 296 degrees of freedom
Multiple R-squared: 0.9921, Adjusted R-squared: 0.9921
F-statistic: 1.246e+04 on 3 and 296 DF, p-value: < 2.2e-16

Notice that we don’t get an estimate for num_adults. This is because of perfect
collinearity. It’s possible to write: 𝑥𝑖4 = 𝑥𝑖3 − 𝑥𝑖2 for all 𝑖 which means there is
an exact linear relationship between some of the independent variables.

To satisfy assumption 3 we should not be able to write one variable as a linear
function of other explantory variables with the relationship holding exactly for
every observation in the dataset.

15.4 Assumption 4: Zero Conditional Mean

Assumption 4: Zero Conditional Mean

The error 𝜀𝑖 has an expected value of zero given any value of the explana-
tory variables, i.e. 𝔼 [𝜀𝑖|𝑋𝑖1, … , 𝑋𝑖𝑘] = 0 for all 𝑋𝑖1, … , 𝑋𝑖𝑘.

This assumption, like before, implies that the error term cannot be correlated
with any of the explanatory variables. It also rules out any nonlinear relation-
ships.
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15.5 Assumption 5: Homoskedasticity

Assumption 5: Homoskedasticity

The error 𝜀𝑖 has the same variance given any value of the explanatory
variables. In other words:

Var (𝜀𝑖|𝑥𝑖1, … , 𝑥𝑖𝑘) = 𝜎2
𝜀

Just like in the SLR model, this means that the dispersion of the error terms
should not vary with any of the explanatory variables.

15.6 Assumption 6: Normality

Assumption 6: Normality

The distribution of 𝜀𝑖 conditional on 𝑥𝑖1, … , 𝑥𝑖𝑘 is normally distributed.

This assumption, combined with assumptions 4 and 5 implies:

𝜀𝑖|𝑥𝑖1, … , 𝑥𝑖𝑘 ∼ 𝒩 (0, 𝜎2
𝜀)

In words: 𝜀𝑖 conditional on 𝑥𝑖1, … , 𝑥𝑖𝑘 follows a normal distribution with a zero
mean and variance 𝜎2

𝜀 .
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Chapter 16

MLR Inference on a Single
Variable

In Chapter 15 we discussed the model assumptions for the multiple linear re-
gression model. When all of these assumptions hold we are able to perform
inference. In this chapter we will discuss inference on a single variable: how to
obtain confidence intervals and how to perform hypothesis tests on one variable.
We will see that this is very similar to the SLR model.

16.1 Model Variance
To obtain standard errors for the regression coefficients, we first require an
estimate of the model variable 𝜎2

𝜀 .

The sum of squared errors 𝑆𝑆𝐸 is the same as before:

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2 =

𝑛
∑
𝑖=1

𝑒2
𝑖

To obtain the sample variance of the estimated model, 𝑠2
𝜀, we use the formula:

𝑠2
𝜀 = 𝑆𝑆𝐸

𝑛 − 𝑘 − 1
Notice that now we divide by 𝑛 − 𝑘 − 1 instead of 𝑛 − 2 in the simple linear
regression model. Because we are now estimating 𝑘 + 1 parameters (the 𝑘
coefficients on the variables plus the intercept) we have only 𝑛−(𝑘+1) = 𝑛−𝑘−1
degrees of freedom.

The simple linear regression model is a special case of the multiple linear regres-
sion model when 𝑘 = 1. So 𝑛 − 𝑘 − 1 = 𝑛 − 1 − 1 = 𝑛 − 2, like what we had in
the simple linear regression model.
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The standard error of the estimated model is then 𝑠𝜀 = √𝑠2𝜀.

16.2 Confidence Intervals
Obtaining a confidence interval for the multiple linear regression model is very
similar to obtaining one for the simple linear regression model.

The formula for the confidence interval for 𝑏𝑗 is:

𝑏𝑗 ± 𝑡1− 𝛼
2 ,𝑛−𝑘−1 × 𝑠𝑏𝑗

where 𝑗 is one of the variables 1, … , 𝑘. We will not write the formula for 𝑠𝑏𝑗
here, but will calculate it in R. The only difference is we use the Student’s 𝑡
distribution with 𝑛 − 𝑘 − 1 degrees of freedom instead of 𝑛 − 2.

Obtaining the confidence interval is also the same in R and we interpret it the
same way. If we have a 95% confidence interval [𝐿𝑗, 𝑈𝑗] around 𝑏𝑗 we say “we
are a 95% confident that the population 𝛽𝑗 is between 𝐿𝑗 and 𝑈𝑗.”

Let’s show a quick example in R using the wages, education and experience data.
If we want to get a 95% confidence interval around 𝑏1, we do:

df <- read.csv("wages1.csv")
m <- lm(wage ~ educ + exper, data = df)
confint(m, "educ", level = 0.95)

2.5 % 97.5 %
educ 0.5385695 0.7499747

We are 95% confident that the average impact on wages of one additional year
of education is between $0.54 and $0.75 holding experience fixed.

16.3 Hypothesis Testing
Hypothesis tests for individual parameters are also done the same way as with
the simple linear regression model. The only difference again is that we use
𝑛 − 𝑘 − 1 degrees of freedom instead of 𝑛 − 2 when finding the quantiles of the
𝑡 distribution and finding 𝑝-values.

We will do an example with the wages, education and experience data. Suppose
you want to test the claim that increasing your experience by 1 year on average
increases your wage by more than $0.05, holding education fixed. You will use
𝛼 = 0.05.

The model is:

𝔼[𝑌𝑖|𝑥𝑖1, 𝑥𝑖2] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2
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with 𝑥𝑖1 being education and 𝑥𝑖2 being experience. The claim is equivalent to
testing if 𝛽2 > 0.05.

The null and alternative hypotheses are then:

𝐻0 ∶𝛽2 ≤ 0.05
𝐻1 ∶𝛽2 > 0.05

Recall that the claim is the alternative hypothesis and the null hypothesis is
the opposite to the alternative. It is therefore usually helpful to write down the
alternative hypothesis first.

Under the null hypothesis the test statistic 𝑇 = 𝐵2−0.05
𝑆𝐵2

follows a 𝑡 distribution
with 𝑛 − 𝑘 − 1 degrees of freedom.

We can use R to calculate the value of the test statistic:

df <- read.csv("wages1.csv")
m <- lm(wage ~ educ + exper, data = df)
b_2 <- coef(summary(m))["exper", "Estimate"]
s_b_2 <- coef(summary(m))["exper", "Std. Error"]
t <- (b_2 - 0.05) / s_b_2
t

[1] 1.830576

If we are using the critical value approach we check if 𝑡 ≥ 𝑡1−𝛼,𝑛−𝑘−1. Let’s
calculate this in R:

qt(0.95, m$df.residual)

[1] 1.647772

Notice that I used m$df.residual to get the degrees of freedom. This number
stored in the model output always contains the number 𝑛 − 𝑘 − 1. Let’s check
that this matches what we would get if we wanted to get 𝑛 − 𝑘 − 1 manually.
We can get the number of observations (number of rows in our dataset) minus
the number of regressors (2) minus 1:

nrow(df) - 2 - 1

[1] 523

m$df.residual

[1] 523

Both give 523. However, using m$df.residual is more reliable because if the
dataset contains missing observations then the number of rows of df does not
equal the number of observations 𝑛 used in the regression.
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Because the test statistic 1.831 is greater than the critical value 1.648 we reject
the null hypothesis.

We can also do this using the 𝑝-value method. To get the 𝑝-value in R we do:

1 - pt(t, m$df.residual)

[1] 0.03386635

The 𝑝-value is less than the significane level 𝛼 = 0.05 so we reject the null
hypothesis. This is the same result as with the critical value approach.

To conclude, because we reject the null hypothesis there is sufficient evidence for
the claim that increasing your experience by one year holding education fixed
increases your wage by more than $0.05 on average.

Here is a summary of the R functions we use for hypothesis testing in the MLR
model. First define the following:

• The size of the test, 𝛼, is alpha.
• The regression is stored as m so that m$df.residual equals 𝑛 − 𝑘 − 1.
• The value of the test statistic, 𝑡, is t.

Critical Values:

• If upper-tail test: qt(1-alpha, m$df.residual).
• If lower-tail test: qt(alpha, m$df.residual).
• If two-sided test: qt(1-alpha/2, m$df.residual).

𝑝-values:

• If upper-tailed test: 1-pt(t, m$df.residual).
• If lower-tailed test: pt(t, m$df.residual).
• If two-sided test: 2*(1-pt(abs(t), m$df.residual)).

16.4 Statistical Significance
Finally, just like with the simple linear regression model, the most common
hypothesis test for the multiple linear regression model is the test for statistical
significance:

𝐻0 ∶ 𝛽𝑗 = 0 vs 𝐻1 ∶ 𝛽𝑗 ≠ 0
Under 𝐻0, the variable 𝑗 is useless within the model:

𝔼 [𝑌𝑖|𝑥𝑖1, … , 𝑥𝑖𝑘] = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 0 ⋅ 𝑥𝑖𝑗 + ⋯ + 𝛽𝑘𝑥𝑖𝑘

That is, under 𝐻0, variable 𝑗 does not contribute to explaining 𝑌𝑖.

In contrast, under 𝐻1, the variable 𝑗 is useful within the model. If we reject
𝐻0, 𝛽𝑗 is statistically different from zero. We say variable 𝑗 is individually
statistically significant.
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Thus how we interpret it is slightly different to the SLR model. There we said
that the model was useful (because there was only one variable), whereas here we
say that an individual variable is useful within the model. Later in Chapter 19
we will learn how to test for model usefulness more generally in the MLR model.

To check for statistical significance in R we can use the summary() function and
quickly check the 𝑝-values of the included regressors:

df <- read.csv("wages1.csv")
m <- lm(wage ~ educ + exper, data = df)
summary(m)

Call:
lm(formula = wage ~ educ + exper, data = df)

Residuals:
Min 1Q Median 3Q Max

-5.5532 -1.9801 -0.7071 1.2030 15.8370

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.39054 0.76657 -4.423 0.000011846645 ***
educ 0.64427 0.05381 11.974 < 2e-16 ***
exper 0.07010 0.01098 6.385 0.000000000378 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.257 on 523 degrees of freedom
Multiple R-squared: 0.2252, Adjusted R-squared: 0.2222
F-statistic: 75.99 on 2 and 523 DF, p-value: < 2.2e-16

If we see that the 𝑝-values are below our desired significance level (such as 0.05)
we say that variable is individually statistically significant. In this model both
variables are individually significant. We can also see this by looking at the ***
next to the 𝑝-values.
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Chapter 17

MLR Quantifying Model
Usefulness

The formulas for 𝑆𝑆𝐸, 𝑆𝑆𝑅, 𝑆𝑆𝑇 and 𝑅2 are also the exact same as the SLR
model. We show here how to calculate them in R.

17.1 𝑆𝑆𝐸, 𝑆𝑆𝑅, 𝑆𝑆𝑇

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2

𝑆𝑆𝑅 =
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − ̄𝑦)2

𝑆𝑆𝑇 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2

𝑅2 = 𝑆𝑆𝑅/𝑆𝑆𝑇 = 1 − 𝑆𝑆𝐸/𝑆𝑆𝑇
We also calculate them in R using the approaches we saw in Chapter 12. Let’s
show how to do this with the wages, education and experience model.

We first estimate a model using only an intercept and call it m1. We then
estimate our full model and call it m2. We then use the anova() function to
compare the two models:

df <- read.csv("wages1.csv")
m1 <- lm(wage ~ 1, data = df)
m2 <- lm(wage ~ educ + exper, data = df)
anova(m1, m2)

Analysis of Variance Table
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Model 1: wage ~ 1
Model 2: wage ~ educ + exper
Res.Df RSS Df Sum of Sq F Pr(>F)

1 525 7160.4
2 523 5548.2 2 1612.2 75.99 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The 𝑆𝑆𝑇 is 7160.4, the 𝑆𝑆𝐸 is 5548.2 and the 𝑆𝑆𝑅 is 1612.2.

More generally, if Model 1 is a model with our dependent variable and only a
constant and Model 2 is the model with our dependent variable and all inde-
pendent variables, the 𝑆𝑆𝑇 , 𝑆𝑆𝐸 and 𝑆𝑆𝑅 in the anova() output are in the
following parts of the table:

Res.Df RSS Df Sum of Sq

1 𝑛 − 1 𝑆𝑆𝑇
2 𝑛 − 𝑘 − 1 𝑆𝑆𝐸 𝑘 𝑆𝑆𝑅

More generally, the structure of the anova() output where model 1 is y on only
the intercept and model 2 is y on all the independent variables is:

m1 <- lm(y ~ 1, data = df)
m2 <- lm(y ~ x1 + x2, data = df)
anova(m1, m2)
Analysis of Variance Table

Model 1: y ~ 1
Model 2: y ~ x1 + x2
Res.Df RSS Df Sum of Sq

1 n-1 SST
2 n-k-1 SSE k SSR
---

We can also use the other approaches we saw in Chapter 12:

m <- lm(wage ~ educ + exper, data = df)

For the 𝑆𝑆𝑇 we can do either:

(nrow(df) - 1) * var(df$wage)

[1] 7160.414

sum((df$wage - mean(df$wage))^2)

[1] 7160.414

For the 𝑆𝑆𝐸 we can do either:
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deviance(m)

[1] 5548.16

sum(m$residuals^2)

[1] 5548.16

For the 𝑆𝑆𝑅 we can use the above results to get:

sst <- (nrow(df) - 1) * var(df$wage)
sse <- deviance(m)
ssr <- sst - sse
ssr

[1] 1612.255

In each case we get the same numbers as the anova() function.

17.2 𝑅2

The 𝑅2 is also shown in the default summary() output:

df <- read.csv("wages1.csv")
m <- lm(wage ~ educ + exper, data = df)
summary(m)

Call:
lm(formula = wage ~ educ + exper, data = df)

Residuals:
Min 1Q Median 3Q Max

-5.5532 -1.9801 -0.7071 1.2030 15.8370

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.39054 0.76657 -4.423 0.000011846645 ***
educ 0.64427 0.05381 11.974 < 2e-16 ***
exper 0.07010 0.01098 6.385 0.000000000378 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.257 on 523 degrees of freedom
Multiple R-squared: 0.2252, Adjusted R-squared: 0.2222
F-statistic: 75.99 on 2 and 523 DF, p-value: < 2.2e-16

The 𝑅2 is 0.2252. In our model education and experience explain 22.52% of the
variation in the wages data. The remaining 77.48% remains unexplained.
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We can also extract this number from the output with:

summary(m)$r.squared

[1] 0.2251622

One thing to note is that the 𝑅2 is no longer the square of the sample correlation
coefficient. That is only true for the simple linear regression.

17.3 Adjusted 𝑅2

Recall that the formula for the 𝑅 squared is 𝑅2 = 1 − 𝑆𝑆𝐸
𝑆𝑆𝑇 and measures the %

of the variation in the 𝑦-data that is explained by the independent variables. If
we add more and more variables to our model, the sum of squared errors always
falls with each variable added and so will always increase the 𝑅2. This could
lead us to add too many variables to our model (a problem called “overfitting”).

You may have noticed that the summary() output also gives another number
called the Adjusted R-squared. In our example it is 0.2222. This adjusted R
squared is one way to help us building models to avoid this overfitting problem.1

The formula for the adjusted 𝑅2 is:

𝑅2
𝑎𝑑𝑗 = 1 − 𝑆𝑆𝐸/ (𝑛 − 𝑘 − 1)

𝑆𝑆𝑇 / (𝑛 − 1)

The adjusted 𝑅2 will decrease if adding a new variable does not explain much
of the variation in the 𝑦-data.

If we want to extract the adjusted 𝑅2 from the R output we can use the com-
mand:

summary(m)$adj.r.squared

[1] 0.2221991

The adjusted 𝑅2 is always smaller than the ordinary 𝑅 squared and can be
negative if the explanatory power of the model is very poor.

1If we wanted to estimate a model 𝔼[𝑌𝑖|𝑥𝑖1, 𝑥𝑖2] = 𝛽0 + 𝛽1(𝑥𝑖1 + 𝑥𝑖2), i.e. a simple linear
regression model with 𝑌𝑖 explained by the sum of 𝑥𝑖1 and 𝑥𝑖2 we can’t just do lm(y ~ x1
+ x2, data = df). This is because this would actually estimate the model 𝔼[𝑌𝑖|𝑥𝑖1, 𝑥𝑖2] =
𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2. To “inhibit” R from “interpreting” the + as adding a new variable we can
use the I() function (the “inhibit interpretation” function). We would use it like this: lm(y
~ I(x1 + x2), data = df).



Chapter 18

MLR Prediction Intervals

Just like we saw in Chapter 13, with chosen values 𝑥𝑝1, … , 𝑥𝑝𝑘 for each of the
independent variables, we can use our regression model to estimate both the
expected value of the dependent variable at those values 𝔼 [𝑌𝑝|𝑥𝑝1, … , 𝑥𝑝𝑘] and
make a prediction of the realized value of 𝑌𝑝. We can also obtain a confidence
interval for 𝔼 [𝑌𝑝|𝑥𝑝1, … , 𝑥𝑝𝑘] and a prediction interval for ̂𝑌𝑝. Doing these in
R is very similar to how we did it for the simple linear regression model in
Chapter 13. We will show examples of these using the wages, education and
experience data.

18.1 Confidence Interval for 𝔼 [𝑌𝑝|𝑥𝑝1, … , 𝑥𝑝𝑘]
You want to estimate the mean wage of people with 12 years of education and
13 years of experience and also obtain a 95% confidence interval for this mean.

Just like in Chapter 13 we perform the following steps:

1. Estimate the regression model.
2. Create a data.frame with one row containing the values for each of the

independent variables.
3. Use the predict() function with the estimated model and this one-row

data.frame, specifying that we want a confidence interval for the mean
(using interval = "confidence").

Here are the steps for our example:

df <- read.csv("wages1.csv")
m <- lm(wage ~ educ + exper, data = df)
df_p <- data.frame(educ = 12, exper = 13)
predict(m, df_p, interval = "confidence", level = 0.95)

fit lwr upr
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1 5.251966 4.948709 5.555222

The model estimates that the average wage of people with 12 years of education
and 13 years of experience is $5.25.

To interpret the confidence interval we say that we are 95% confident that the
population mean wage of people with 12 years of education and 13 years of
experience is between $4.95 and $5.56.

18.2 Confidence Interval for 𝑌𝑝 given 𝑥𝑝1, … , 𝑥𝑝𝑘

Suppose now you want to predict the wage of one individual with 12 years of
education and 13 years of experience and obtain a 95% prediction interval for
that prediction. That is, you want an interval that contains with 95% probability
the actual wage for this individual.

We follow almost the same steps as before, but now we use the "prediction"
option for interval in the predict() function instead of "confidence":

df <- read.csv("wages1.csv")
m <- lm(wage ~ educ + exper, data = df)
df_p <- data.frame(educ = 12, exper = 13)
predict(m, df_p, interval = "prediction", level = 0.95)

fit lwr upr
1 5.251966 -1.153713 11.65764

The model predicts that the wage of an individual with 12 years of education
and 13 years of experience is $5.25. We are 95% confident that this individual
with 12 years of education and 13 years of experience will have a wage between
−$1.15 and $11.66.

Notice that the prediction is the same as the estimate of 𝔼 [𝑌𝑝|𝑥𝑝1 = 12, 𝑥𝑝2 = 13]
but the confidence interval is much wider. This is because we are more un-
certain about the wage of one individual (which contains the variability of
the error 𝜀𝑝) compared to the average wage (where the errors are averaged
out across individuals). The lower bound of this confidence interval is even
negative! The upper bound is also very large in the distribution of wages:

summary(df$wage)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.530 3.330 4.650 5.896 6.880 24.980

We can check what quantile the upper bound is in:

mean(df$wage < 11.65764)

[1] 0.9220532
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This means that our prediction interval is extremely wide: by needing to be
95% confident, we can only say that the wage of this individual will be between
$0 (smaller than the lowest observed wage in the data) and $11.66 (larger than
92.2% of observed wages in the data)!
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Chapter 19

𝐹 -test

In Chapter 11 we learned how to test for model usefulness for the simple linear
regression model. In Chapter 16 (Section 16.4) we learned how to test the
usefulness of individual variables in the multiple linear regression model. In
this chapter we will learn how to test for the usefulness of the model as a whole
in the multiple linear regression model.

To do this we are going to use an 𝐹 -test which makes use of the 𝐹 distribution.

19.1 𝐹 -Test Theory
We want to test if the whole model is useful or not:

𝐻0 ∶ 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0
𝐻1 ∶ at least one of 𝛽𝑗 ≠ 0 for 𝑗 = 1, … , 𝑘

Under 𝐻0, the whole model is useless. Under 𝐻1, there is at least one useful
variable in the model. Notice that these only include the parameters in front of
regressors and not the intercept 𝛽0.

Under the null hypothesis, the test statistic:

𝐹 = 𝑆𝑆𝑅/𝑘
𝑆𝑆𝐸/ (𝑛 − 𝑘 − 1)

follows an 𝐹 distribution with 𝑘 numerator and 𝑛 − 𝑘 − 1 denominator degrees
of freedom. We use 𝐹𝑘,𝑛−𝑘−1 to denote this distribution.

Let’s take a look at what 𝐹𝑘,𝑛−𝑘−1 looks like. For 𝑘 = 3 and 𝑛 = 100, the
density of the distribution looks like this:
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library(ggplot2)
k <- 3
n <- 100
df <- data.frame(x = qf(seq(0.000, 0.999, by = 0.001), k, n - k - 1))
df$y <- df(df$x, k, n - k - 1)
ggplot(data = df, aes(x = x, y = y)) +
geom_line() +
xlab("") +
ylab("") +
theme_minimal()
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This means that if the null hypothesis is true, then the 𝐹 -ratio 𝐹 = 𝑆𝑆𝑅/𝑘
𝑆𝑆𝐸/(𝑛−𝑘−1)

from samples drawn from the population should usually be less then 2.5 because
that’s where the bulk of the mass of the distribution is. If in our realized sample
we see a value of 𝐹 larger than, say, 3, then that is something that is very rare
under the null hypothesis. If we find that the 𝐹 we get in our model is large,
then it is less likely that we just happened to observe a very extreme sample
drawn from the population and more likely that that the null hypothesis is false.
That is, it is unlikely that all 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 and that the model is
useful.

If we are using a critical value approach with a 5% level then we find the point
in the distribution with 95% of the area to the left and 5% of the area to the
right. This point turns out to be at 2.6994. So if we find the 𝐹 -ratio in our
sample to be bigger than 2.6994 we reject the null hypothesis and conclude that
our model is useful. If we find it to be smaller than 2.6994 then we say that we
have insufficient evidence to suggest our model is useful. We show the rejection
region and non-rejection region in the same plot:

library(ggplot2)
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k <- 3
n <- 100
df <- data.frame(x = qf(seq(0.000, 0.999, by = 0.001), k, n - k - 1))
df$y <- df(df$x, k, n - k - 1)
df$reject <- ifelse(df$x > qf(0.95, k, n - k - 1), "Reject", "Don't reject")
ggplot(data = df) +
geom_ribbon(aes(x = x, ymin = 0, ymax = y, fill = reject)) +
geom_line(aes(x = x, y = y)) +
xlab("") +
ylab("") +
theme_minimal() +
theme(legend.title = element_blank(), legend.position = "bottom")
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Don't reject Reject

If our sample is in the red area we don’t reject; if it is in the blue area we do.
Notice that the test is a one-sided test.

The 𝑝-value is the probability of obtaining a sample at least as extreme as the
observed sample. It is the area under the distribution to the right of the observed
𝐹 -ratio. If we obtained an 𝐹 -ratio of 1 in our sample, the 𝑝-value would be the
area to the right of 1, which is equal to 0.396 and indicated by the gray area in
the figure below:

library(ggplot2)
k <- 3
n <- 100
df <- data.frame(x = qf(seq(0.000, 0.999, by = 0.001), k, n - k - 1))
df$y <- df(df$x, k, n - k - 1)
df$fill <- df$x > 1
ggplot() +
geom_ribbon(data = df[df$x > 1,], aes(x = x, ymin = 0, ymax = y),
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fill = "gray") +
geom_line(data = df, aes(x = x, y = y)) +
xlab("") +
ylab("") +
theme_minimal() +
theme(legend.title = element_blank(), legend.position = "bottom")
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19.2 𝐹 -Test in R
We will do an 𝐹 test with the wages, education and experience example.

• We construct the null and alternative hypotheses:

𝐻0 ∶ 𝛽1 = 𝛽2 = 0
𝐻1 ∶ at least one of 𝛽𝑗 ≠ 0 for 𝑗 = 1, 2

• Under 𝐻0:

𝐹 = 𝑆𝑆𝑅/𝑘
𝑆𝑆𝐸/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘,𝑛−𝑘−1

We now have to calculate the realized value of 𝐹 in our sample, 𝑓 . We
estimate the model:

df <- read.csv("wages1.csv")
m <- lm(wage ~ educ + exper, data = df)
summary(m)

Call:
lm(formula = wage ~ educ + exper, data = df)
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Residuals:
Min 1Q Median 3Q Max

-5.5532 -1.9801 -0.7071 1.2030 15.8370

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.39054 0.76657 -4.423 0.000011846645 ***
educ 0.64427 0.05381 11.974 < 2e-16 ***
exper 0.07010 0.01098 6.385 0.000000000378 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.257 on 523 degrees of freedom
Multiple R-squared: 0.2252, Adjusted R-squared: 0.2222
F-statistic: 75.99 on 2 and 523 DF, p-value: < 2.2e-16

We see that the output of summary() already gives the value of the 𝐹 -test test
statistic and the associated 𝑝-value. The realized value of 𝑓 in our sample is
75.99 and the associated 𝑝-value of the 𝐹 -test is very close to zero (< 2.2e-16).
We can extract the value from the first value of summary(m)$fstatistic. The
2nd and 3rd values are the numerator and denominator degrees of freedom,
respectively.

summary(m)$fstatistic

value numdf dendf
75.98998 2.00000 523.00000

(f <- summary(m)$fstatistic[1])

value
75.98998

To obtain the critical value we use the qf() function with 3 arguments: (i) one
minus the size of the test, 1 − 𝛼, (ii) the numerator degrees of freedom, 𝑘 and
(iii) the denominator degrees of freedom, 𝑛 − 𝑘 − 1:

qf(0.95, 2, 523)

[1] 3.012957

We can also get these degrees of freedom from the model output to make sure
we use the right numbers. We can do:

(numdf <- summary(m)$fstatistic[2])

numdf
2

(dendf <- summary(m)$fstatistic[3])

dendf
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523

qf(0.95, numdf, dendf)

[1] 3.012957

We reject 𝐻0 if the observed 𝑓 is greater than the critical value, 3.013. Indeed
in our case 𝑓 = 75.99 so we reject the null hypothesis.

If we were using the 𝑝-value approach we could just read the 𝑝-value right from
the summary() output. To obtain it manually we can do:

1 - pf(f, 2, 523)

value
0

The 𝑝-value is numerically zero, so we reject the null hypothesis.

We conclude by saying our model is useful at the 5% level.

19.3 Summary of Steps
19.3.1 Critical Value Method for Testing Model Useful-

ness
• Construct null and alternative hypotheses:

𝐻0 ∶ 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0
𝐻1 ∶ at least one of 𝛽𝑗 ≠ 0 for 𝑗 = 1, … , 𝑘

• Under 𝐻0:

𝐹 = 𝑆𝑆𝑅/𝑘
𝑆𝑆𝐸/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘,𝑛−𝑘−1

• Calculate the value of the test statistic, 𝑓 .
– Extract from R output with summary(m)$fstatistic[1].

• Reject 𝐻0 if 𝑓 ≥ 𝐹1−𝛼,𝑘,𝑛−𝑘−1.
– We find 𝐹1−𝛼,𝑘,𝑛−𝑘−1 in R with qf(1-alpha, k, n-k-1).

• Draw a conclusion.

19.3.2 𝑝-Value Method for Testing Model Usefulness
• Construct null and alternative hypotheses:

𝐻0 ∶ 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0
𝐻1 ∶ at least one of 𝛽𝑗 ≠ 0 for 𝑗 = 1, … , 𝑘

• Under 𝐻0:

𝐹 = 𝑆𝑆𝑅/𝑘
𝑆𝑆𝐸/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘,𝑛−𝑘−1
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• Calculate the value of the test statistic, 𝑓 .
– Extract from R output with summary(m)$fstatistic[1].

• Calculate the 𝑝-value and reject if 𝑝 ≤ 𝛼.
– Find the 𝑝-value in R with: 1-pf(f, k, n-k-1).
– However, we will see that summary() always gives this, so it’s not

necessary to calculate.
• Draw a conclusion.
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Chapter 20

Partial 𝐹 -Test

In the multiple linear regression model we learned that:

1. We use a 𝑡-test to test if a single variable 𝑋𝑗 is useful in the model.
2. We use an 𝐹 -test to test if all 𝑋1, 𝑋2, …, 𝑋𝑘 were jointly useful in the

model.

What we will learn in this chapter is how to test if a subset of 𝑋1, 𝑋2, …, 𝑋𝑘
are jointly useful. This test is called a Partial F-test.

20.1 Complete and Reduced Model
In terms of definitions, we call the complete model the model with 𝑘 independent
variables:

𝔼 [𝑌𝑖|𝑥𝑖1, … , 𝑥𝑖𝑘] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑔𝑥𝑖𝑔 + 𝛽𝑔+1𝑥𝑖,𝑔+1 + ⋯ + 𝛽𝑘𝑥𝑖𝑘

The reduced model is the model with 𝑔 < 𝑘 independent variables:

𝔼 [𝑌𝑖|𝑥𝑖1, … , 𝑥𝑖𝑔] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑔𝑥𝑖𝑔

20.2 Null and Alternative Hypotheses
What the partial 𝐹 -test does is test if the 𝑘 − 𝑔 variables 𝑋𝑔+1, 𝑋𝑔+2, …, 𝑋𝑘
are jointly useful in the model.

The null and alternative hypotheses are:

𝐻0 ∶ 𝛽𝑔+1 = 𝛽𝑔+2 = ⋯ = 𝛽𝑘 = 0
𝐻1 ∶ at least one of 𝛽𝑗 ≠ 0 for 𝑗 = 𝑔 + 1, … , 𝑘
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Example

This is quite general notation so to help fix ideas suppose the complete model
has 5 variables and the reduced model has 3 variables. The complete model is
then:

𝔼 [𝑌𝑖|𝑥𝑖1, … , 𝑥𝑖𝑘] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4 + 𝛽5𝑥𝑖5

The reduced model is then:

𝔼 [𝑌𝑖|𝑥𝑖1, … , 𝑥𝑖𝑔] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3

The null and alternative hypotheses of the partial 𝐹 -test are then:

𝐻0 ∶ 𝛽4 = 𝛽5 = 0
𝐻1 ∶ at least one of 𝛽𝑗 ≠ 0 for 𝑗 = 4, 5

20.3 The Test Statistic
We first discuss the intuition for the partial 𝐹 -test test statistic.

The total variation in the 𝑦-data is measured by the total sum of squared 𝑆𝑆𝑇 =
∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2. This is like the sum of squared errors without any model: where
we just use the mean ̄𝑦 to predict 𝑦𝑖. With the reduced model, the sum of
squared errors is 𝑆𝑆𝐸𝑟 and with the complete model the sum of squared errors
is 𝑆𝑆𝐸𝑐.

By adding more variables to our model, we always reduce the sum of squared
errors, so it holds that 𝑆𝑆𝐸𝑟 ≥ 𝑆𝑆𝐸𝑐 always. If the complete model reduces
the sum of squared errors “a lot” (i.e. 𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑐 is large), then the new
𝑘 − 𝑔 variables are useful additions to the model. If the complete model’s sum
of square errors is “very similar” to the reduced model (i.e. 𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑐 is
small), then the new 𝑘 − 𝑔 variables are not very useful additions to the model.

The partial 𝐹 test statistic captures the size of this difference. Under 𝐻0:

𝐹 = (𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑐) / (𝑘 − 𝑔)
𝑆𝑆𝐸𝑐/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘−𝑔,𝑛−𝑘−1

That is, this test statistic follows an 𝐹 distribution with 𝑘 − 𝑔 numerator and
𝑛 − 𝑘 − 1 denominator degrees of freedom.

20.4 Carrying out the Test
To show how to carry out the rest of the test we will use an example. Because
a partial 𝐹 -test only makes sense in models with at least 3 variables, we will
return to the clothing expenditure model we saw in Chapter 15.
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Why do we need at least 3 variables? With only 2 variables, we can use a regular
𝑡-test to test the usefulness of one variable, and we can use a regular 𝐹 -test to
test the usefulness of both variables. To have a subset with at least 2 variables
we need a complete model with at least 3 variables.

Using the clothing expenditure model, we ask the following question: Does a
household’s clothing expenditure depend on the household composition (number
of people and number of children) after we control for household income (using
𝛼 = 0.05)?

The question is asking if the number of children and the household size are
useful additions to the model.

The complete model is:

𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3

where 𝑥𝑖1 is household income, 𝑥𝑖2 is the number of children and 𝑥𝑖3 is the
household size.

The reduced model does not include the household composition variables:

𝔼 [𝑌𝑖|𝑥𝑖1] = 𝛽0 + 𝛽1𝑥𝑖1

The null & alternative hypotheses are:

• 𝐻0 ∶ 𝛽2 = 𝛽3 = 0.
• 𝐻1 ∶ 𝛽2 ≠ 0 or 𝛽3 ≠ 0 or both.

We form the test statistic: Under 𝐻0:

𝐹 = (𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑐) / (𝑘 − 𝑔)
𝑆𝑆𝐸𝑐/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘−𝑔,𝑛−𝑘−1

We now need to calculate the realized value of the test statistic in our sample.
To do this we follow a very similar approach to our we calculate the 𝑆𝑆𝐸, 𝑆𝑆𝑅
and 𝑆𝑆𝑇 . We estimate both the reduced model and the complete model and
call then m1 and m2, respectively, and then use the anova() function.

df <- read.csv("clothing-exp.csv")
m1 <- lm(clothing_exp ~ hh_inc, data = df)
m2 <- lm(clothing_exp ~ hh_inc + num_kids + hh_size, data = df)
anova(m1, m2)

Analysis of Variance Table

Model 1: clothing_exp ~ hh_inc
Model 2: clothing_exp ~ hh_inc + num_kids + hh_size
Res.Df RSS Df Sum of Sq F Pr(>F)

1 298 3.3809
2 296 3.1442 2 0.23671 11.142 0.00002161 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The 𝑆𝑆𝐸𝑟 is 3.3809 under 𝑅𝑆𝑆 for model 1. The 𝑆𝑆𝐸𝑐 is 3.1442 under 𝑅𝑆𝑆 for
model 2. Notice that the 𝑆𝑆𝐸𝑐 is smaller than 𝑆𝑆𝐸𝑟. This will always be the
case because additional variables will always reduce the sum of squared errors
in the model. What the partial 𝐹 -test is testing is whether this reduction is
relatively large. The 0.23671 under Sum of Sq is the difference 𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑐
in the numerator of the partial 𝐹 -test statistic formula.

The resulting partial 𝐹 -test test statistic is under F and is 11.142. The associated
𝑝-value is next to it and equals 0.00002161. The table also shows the numerator
and denominator degrees of freedom for the partial 𝐹 -test: The 2 under Df is
𝑘 − 𝑔 and the 296 under Res.Df for model 2 is 𝑛 − 𝑘 − 1. Putting everything
together from the formula (𝑆𝑆𝐸𝑟−𝑆𝑆𝐸𝑐)/(𝑘−𝑔)

𝑆𝑆𝐸𝑐/(𝑛−𝑘−1) we can confirm that these give the
same 𝐹 as in the 5th column:

(0.23671 / 2) / (3.1442 / 296)

[1] 11.14213

If we want to extract the value of the test statistic we can do:

anova(m1, m2)$F[2]

[1] 11.14205

If we are following the critical value approach we compare this test statistic to
the critical value. Similar to the regular 𝐹 test we get the critical value using the
qf() function but instead of 𝑘 − 𝑔 numerator degrees of freedom and 𝑛 − 𝑘 − 1
denominator degrees of freedom:

qf(0.95, 2, 296)

[1] 3.026257

The test statistic is greater than the critical value so we reject the null hypothesis.
We also get the same conclusion looking at the critical value, which is less than
0.05. Thus the household composition variables are useful additions to the
model after controlling for household income.

More generally, if we are carrying out a partial 𝐹 test where Model 1 is our
reduced model and Model 2 is our complete model, the contents of the anova()
output is as follows:

Res.Df RSS Df Sum of Sq F Pr(>F)

1 𝑛 − 𝑔 − 1 𝑆𝑆𝐸𝑟
2 𝑛 − 𝑘 − 1 𝑆𝑆𝐸𝑐 𝑘 − 𝑔 𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑐 value of test

statistic
𝑝-
value
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20.5 Relationship between the Partial 𝐹 -test the
𝐹 -test

The partial 𝐹 -test is actually a generalization of the regular 𝐹 test we learned
about before. If the reduced model is simply:

𝔼 [𝑌𝑖] = 𝛽0

then the partial 𝐹 -test turns into a regular 𝐹 -test. This is the case with 𝑔 = 0.

To see this, consider the test statistic

𝐹 = (𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑐) / (𝑘 − 𝑔)
𝑆𝑆𝐸𝑐/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘−𝑔,𝑛−𝑘−1

With a reduced model of just a constant, the 𝑆𝑆𝐸𝑟 is the same as the 𝑆𝑆𝑇 .
This is exactly how we learned how to obtain the 𝑆𝑆𝐸, 𝑆𝑆𝑅 and 𝑆𝑆𝑇 in
Chapter 17. We had to estimate a reduced model with just a constant. With
𝑔 = 0 and calling 𝑆𝑆𝐸𝑐 simply 𝑆𝑆𝐸, the test statistic becomes:

𝐹 = (𝑆𝑆𝑇 − 𝑆𝑆𝐸) /𝑘
𝑆𝑆𝐸/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘,𝑛−𝑘−1

Finally, using the identity 𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅 we can write:

𝐹 = 𝑆𝑆𝑅/𝑘
𝑆𝑆𝐸/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘,𝑛−𝑘−1

The is exactly the same as the standard 𝐹 -test!

20.6 Summary of Steps
20.6.1 Critical Value Method for the Partial 𝐹 -Test}

• Construct null and alternative hypotheses:

𝐻0 ∶ 𝛽𝑔+1 = 𝛽𝑔+2 = ⋯ = 𝛽𝑘 = 0
𝐻1 ∶ at least one of 𝛽𝑗 ≠ 0 for 𝑗 = 𝑔 + 1, … , 𝑘

• Under 𝐻0:

𝐹 = (𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑐) / (𝑘 − 𝑔)
𝑆𝑆𝐸𝑐/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘−𝑔,𝑛−𝑘−1

• Calculate the value of the test statistic, 𝑓 .
• Reject 𝐻0 if 𝑓 ≥ 𝐹1−𝛼,𝑘−𝑔,𝑛−𝑘−1

– Find 𝐹1−𝛼,𝑘−𝑔,𝑛−𝑘−1 in R with qf(1-alpha, k-g, n-k-1).
• Draw a conclusion.
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20.6.2 𝑝-Value Method for the Partial 𝐹 -Test
• Construct null and alternative hypotheses:

𝐻0 ∶ 𝛽𝑔+1 = 𝛽𝑔+2 = ⋯ = 𝛽𝑘 = 0
𝐻1 ∶ at least one of 𝛽𝑗 ≠ 0 for 𝑗 = 𝑔 + 1, … , 𝑘

• Under 𝐻0:

𝐹 = (𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑐) / (𝑘 − 𝑔)
𝑆𝑆𝐸𝑐/ (𝑛 − 𝑘 − 1) ∼ 𝐹𝑘−𝑔,𝑛−𝑘−1

• Calculate the value of the test statistic, 𝑓 .
• Reject 𝐻0 if 𝑝 = Pr (𝐹 ≥ 𝑓) ≤ 𝛼

– Find 𝑝 in R with 1-pf(f, k-g, n-k-1).
• Draw a conclusion.



Chapter 21

Collinearity

21.1 Introduction
In Chapter 20 we learned how to test if a subset of variables were useful in a
model. We showed an example with the clothing expenditure data and deter-
mined that the “household composition” variables (number of children and the
household size) were jointly useful in the model. Here are the steps again:

df <- read.csv("clothing-exp.csv")
m1 <- lm(clothing_exp ~ hh_inc, data = df)
m2 <- lm(clothing_exp ~ hh_inc + num_kids + hh_size, data = df)
anova(m1, m2)

Analysis of Variance Table

Model 1: clothing_exp ~ hh_inc
Model 2: clothing_exp ~ hh_inc + num_kids + hh_size
Res.Df RSS Df Sum of Sq F Pr(>F)

1 298 3.3809
2 296 3.1442 2 0.23671 11.142 0.00002161 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The 𝑝-value of the partial 𝐹 -test is close to zero (0.00002161) so we reject the
null hypothesis that the variables were useless in the model and conclude that
they are useful.

Let’s take a look at the individual significance of each variable:

summary(m2)

Call:

131
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lm(formula = clothing_exp ~ hh_inc + num_kids + hh_size, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.27225 -0.05878 -0.00765 0.05767 0.43981

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0125930 0.0232879 -0.541 0.589
hh_inc 0.0822021 0.0004423 185.861 <2e-16 ***
num_kids 0.0108057 0.0137232 0.787 0.432
hh_size 0.0119808 0.0116495 1.028 0.305
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1031 on 296 degrees of freedom
Multiple R-squared: 0.9921, Adjusted R-squared: 0.9921
F-statistic: 1.246e+04 on 3 and 296 DF, p-value: < 2.2e-16

Here only household income is individually statistically significant at the 5%
level. The 𝑝-values for number of children and household size are both greater
than 0.05 (0.432 and 0.305 respectively) and thus insignificant.

How can it be that neither of these two variables are individually significant,
but together they are jointly significant? We will see that this can happen when
we face the problem of collinearity.

21.2 Collinearity versus Strictly Collinearity
Finding variables to be jointly significant but individually insignificant can some-
times occur if variables are strongly (but not perfectly) correlated with each
other. Let’s check the correlation between the two variables:

cor(df$num_kids, df$hh_size)

[1] 0.9270981

A correlation of 0.927 indicates a very strong positive linear relationship between
the two variables. This makes sense, because more children in a household
usually means there are more people in the household in total!

When there is a strong correlation (close to +1 or −1) between the indepen-
dent variables, we encounter a problem known as collinearity. This problem is
related but different to the no strict collinearity assumption we encountered in
Chapter 15.

Strict collinearity is when one of the independent variables is an exact linear
combination of one or more independent variables. This would occur if two
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variables have a perfect linear relationship (a correlation of +1 or −1). In this
case R will not estimate a regression coefficient for one of the two perfectly
correlated variables and will return NA for that variable.

Collinearity, on the other hand, is when one of the independent variables is
strongly related to another variable (or a linear combination of other variables)
but not perfectly so. A correlation of 0.927 in our example above is an example
of two variables that are the strongly but not perfectly related. In the presence
of collinearity R will estimate the model but two problems can occur:

1. The interpretation of the parameter estimates can become difficult. It is
unclear if the number of children or the number of adults or both are
increasing the clothing expenditure.

2. The standard errors on the estimated parameters can increase. This results
in wider confidence intervals and smaller 𝑝-values in individual significance
tests.

21.3 Possible Remedies for Collinearity
When you face a collinearity problem there are a number of different possible
remedies.

One solution is to remove the offending variable. If two variables are highly
correlated, then including both does not offer very much additional information
when one variable is already included. In the clothing expenditure example, we
might decide to drop the num_kids variable, because once we know the house-
hold size, knowing how many children there are in the household does not con-
tain very much additional information because we know that large households
usually contain lots of children. Let’s try this out:

summary(lm(clothing_exp ~ hh_inc + hh_size, data = df))

Call:
lm(formula = clothing_exp ~ hh_inc + hh_size, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.27475 -0.05785 -0.00393 0.05942 0.43730

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0252035 0.0168961 -1.492 0.137
hh_inc 0.0821609 0.0004389 187.202 < 2e-16 ***
hh_size 0.0204746 0.0043961 4.657 0.00000484 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 0.103 on 297 degrees of freedom
Multiple R-squared: 0.9921, Adjusted R-squared: 0.9921
F-statistic: 1.871e+04 on 2 and 297 DF, p-value: < 2.2e-16

We can see that the household size variable is now individually statistically
significant.

Another solution that is sometimes available is to create a new variable from the
two problematic variables to solve the problem. For example, we could create a
variable num_adults from the hh_size and num_kids variables. We could then
change the model to use num_adults and num_kids instead of the household
size variable. Unlike the previous solution which throws away the information
about the household composition, this approach allows us to see the effects of
adults and children separately.

Let’s create the variable and check their correlation:

df$num_adults <- df$hh_size - df$num_kids
cor(df$num_adults, df$num_kids)

[1] 0.2301997

This correlation, although sizeable, is much smaller than before and not large
enough to create a collinearity problem in the regression. To better understand
this correlation, let’s cross-tabulate the two variables:

table(df$num_kids, df$num_adults)

1 2 3
0 54 101 12
1 9 30 7
2 2 50 6
3 0 18 1
4 0 7 0
5 0 3 0

Here the number of adults is shown left to right (1 to 3) and the number of
children is shown top to bottom (0 to 5). The numbers in the table show the
number of observations with that number of adults and number of children
combination. For example, the 54 indicates that there are 54 observations (out
of 300) with 1 adult and 0 children in the household. The 101 indicates that
there are 101 observations with 2 adults and 0 children.

Looking at the relationship between the number of adults and number of chil-
dren, we see there are no houses with no adults (each house has at least 1, 2 or
3 adults). Houses with children generally have at least 2 adults. Only 11 houses
have 1-2 children and only 1 adult. So the positive correlation comes from chil-
dren mostly living in houses with 2-3 adults and most of the single-adult houses
have no children.
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Let’s now run the regression with these two variables:

summary(lm(clothing_exp ~ hh_inc + num_adults + num_kids, data = df))

Call:
lm(formula = clothing_exp ~ hh_inc + num_adults + num_kids, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.27225 -0.05878 -0.00765 0.05767 0.43981

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0125930 0.0232879 -0.541 0.589
hh_inc 0.0822021 0.0004423 185.861 < 2e-16 ***
num_adults 0.0119808 0.0116495 1.028 0.305
num_kids 0.0227865 0.0052888 4.308 0.0000224 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1031 on 296 degrees of freedom
Multiple R-squared: 0.9921, Adjusted R-squared: 0.9921
F-statistic: 1.246e+04 on 3 and 296 DF, p-value: < 2.2e-16

We now see that num_kids is significant, while num_adults is insignificant. The
size of the coefficient for num_kids is now similar to hh_size in the previous
regression. The previous regression told us that more people in the household
increased clothing expenditure, but we did not know if it was the children or
the adults that were driving this. This regression now makes this clear: adding
a child to a household increases the clothing expenditure on average more than
adding an adult (holding all else constant).
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Chapter 22

Higher-Order Terms

22.1 Theory
In this chapter we will discuss how to model non-linear relationships between
𝑋 and 𝑌 .

In the simple linear regression model with 𝔼 [𝑌𝑖|𝑥𝑖] = 𝛽0 + 𝛽1𝑥𝑖, if 𝑥𝑖 increases
by 1 unit, 𝔼 [𝑌𝑖|𝑥𝑖] increases by 𝛽1 units no matter the value of 𝑥.

With the multiple linear regression model, we can use 𝑥2
𝑖 as a second variable

in the model to make 𝔼 [𝑌𝑖|𝑥𝑖] a quadratic function of 𝑥𝑖:

𝔼 [𝑌𝑖|𝑥𝑖] = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥2
𝑖

Now as 𝑥𝑖 changes, the change in 𝔼 [𝑌𝑖|𝑥𝑖] depends on the initial value of 𝑥𝑖.
Let’s look at 𝔼 [𝑌𝑖|𝑥𝑖] for different values of 𝑥𝑖:

𝔼 [𝑌𝑖|𝑥𝑖 = 0] = 𝛽0
𝔼 [𝑌𝑖|𝑥𝑖 = 1] = 𝛽0 + 𝛽1 ⋅ 1 + 𝛽2 ⋅ 1
𝔼 [𝑌𝑖|𝑥𝑖 = 2] = 𝛽0 + 𝛽1 ⋅ 2 + 𝛽2 ⋅ 4
𝔼 [𝑌𝑖|𝑥𝑖 = 3] = 𝛽0 + 𝛽1 ⋅ 3 + 𝛽2 ⋅ 9

As 𝑥𝑖 goes from 0 to 1, 𝔼 [𝑌𝑖|𝑥𝑖] increases by 𝛽1 + 𝛽2. But when 𝑥𝑖 goes from 1
to 2, 𝔼 [𝑌𝑖|𝑥𝑖] increases by 𝛽1 + 3𝛽2. The change depends on the value of 𝑥𝑖!

This modeling approach is useful if the underlying relationship between 𝑋 and
𝑌 is non-linear and a quadratic function is better suited to fit the relationship.

22.2 Estimation in R
We will now learn how we can estimate a model like this in R. The model we
want to estimate is:
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𝔼 [𝑌𝑖|𝑥𝑖] = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥2
𝑖

One way to do this is to create a new variable that is the square of the 𝑥 variable
and add it to the model.

Let’s try this with the clothing expenditure data and a quadratic term for house-
hold income:

df <- read.csv("clothing-exp.csv")
df$hh_inc_sq <- df$hh_inc^2
summary(lm(clothing_exp ~ hh_inc + hh_inc_sq, data = df))

Call:
lm(formula = clothing_exp ~ hh_inc + hh_inc_sq, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.31144 -0.05935 -0.00628 0.06120 0.40051

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.06057699 0.03156091 -1.919 0.05590 .
hh_inc 0.08738403 0.00177497 49.231 < 2e-16 ***
hh_inc_sq -0.00006019 0.00002177 -2.764 0.00606 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1053 on 297 degrees of freedom
Multiple R-squared: 0.9918, Adjusted R-squared: 0.9917
F-statistic: 1.788e+04 on 2 and 297 DF, p-value: < 2.2e-16

There is also a way in R to include squared terms (or any other function) of
a variable without having to create a new variable. We can just make the
transformation directly within the formula in the lm() function. We just have
to put it inside the I() function (where I stands for “inhibit interpretation”).1

df <- read.csv("clothing-exp.csv")
summary(lm(clothing_exp ~ hh_inc + I(hh_inc^2), data = df))

Call:
1If we wanted to estimate a model 𝔼[𝑌𝑖|𝑥𝑖1, 𝑥𝑖2] = 𝛽0 + 𝛽1(𝑥𝑖1 + 𝑥𝑖2), i.e. a simple linear

regression model with 𝑌𝑖 explained by the sum of 𝑥𝑖1 and 𝑥𝑖2 we can’t just do lm(y ~ x1
+ x2, data = df). This is because this would actually estimate the model 𝔼[𝑌𝑖|𝑥𝑖1, 𝑥𝑖2] =
𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2. To “inhibit” R from “interpreting” the + as adding a new variable we can
use the I() function (the “inhibit interpretation” function). We would use it like this: lm(y
~ I(x1 + x2), data = df).
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lm(formula = clothing_exp ~ hh_inc + I(hh_inc^2), data = df)

Residuals:
Min 1Q Median 3Q Max

-0.31144 -0.05935 -0.00628 0.06120 0.40051

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.06057699 0.03156091 -1.919 0.05590 .
hh_inc 0.08738403 0.00177497 49.231 < 2e-16 ***
I(hh_inc^2) -0.00006019 0.00002177 -2.764 0.00606 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1053 on 297 degrees of freedom
Multiple R-squared: 0.9918, Adjusted R-squared: 0.9917
F-statistic: 1.788e+04 on 2 and 297 DF, p-value: < 2.2e-16

We get the same result and saved one line of code. More importantly we can
keep our data frame df “cleaner” by not having an extra variable in it that we
only need for this regression.

Now let’s interpret the results. The both the level term hh_inc and the squared
term I(hh_inc^2) are statistically significant. The 𝑝-value for the first term
is very close to zero and is 0.00606 for the second term. Therefore there is
statistical evidence of a non-linear relationship between household income and
clothing expenditure.

The level term is positive and the quadratic term is negative. When this occurs
the functional form has an inverse-U shape:

library(ggplot2)
df <- data.frame(x = seq(0, 1, by = 0.01))
df$y <- df$x - df$x^2
ggplot(df, aes(x, y)) +
geom_line() +
theme_minimal()
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This means for small income levels, as income increases clothing expenditure in-
creases on average. But as income rises, unit increases in income has a smaller
effect on clothing expenditure. For very high levels of income, eventually in-
creases in income leads to a decrease in clothing expenditure, but this might be
outside the range of our data.

Let’s take a look at this in the data.

library(ggplot2)
df <- read.csv("clothing-exp.csv")
ggplot(df, aes(hh_inc, clothing_exp)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x + I(x^2), se = FALSE) +
xlab("Household income (in €000)") +
ylab("Clothing expenditure (in €100)") +
theme_minimal()
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When we fit the quadratic function to the data the function almost appears
linear! This is because the estimate of 𝛽2 is very very small (-0.0000601). Al-
though the coefficient estimate is statistically significant, the fact that it is so
small it has very little impact on the predictions.

Let’s compare it to a standard linear model without a quadratic term, which
we add to the plot in red.

library(ggplot2)
df <- read.csv("clothing-exp.csv")
ggplot(df, aes(hh_inc, clothing_exp)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x + I(x^2), se = FALSE,

lwd = 0.5) +
geom_smooth(method = "lm", formula = y ~ x, color = "red", se = FALSE,

lwd= 0.5) +
xlab("Household income (in €000)") +
ylab("Clothing expenditure (in €100)") +
theme_minimal()
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It looks almost identical. The blue line is only slightly different at very high
levels in income.

If we compare the 𝑅2s from both models we will also see that adding the
quadratic term only explains a very small amount more of the variation in
clothing expenditure:

df <- read.csv("clothing-exp.csv")
summary(lm(clothing_exp ~ hh_inc, data = df))$r.squared

[1] 0.9915508

summary(lm(clothing_exp ~ hh_inc + I(hh_inc^2), data = df))$r.squared

[1] 0.9917628

The linear model can explain 99.155%, while the quadratic model can explain
99.176%. So although the quadratic model has more explanatory power, we
may prefer the simpler model for ease of interpretation because it is almost as
good.



Chapter 23

Interaction Terms

23.1 Theory
Sometimes the effect of one 𝑋 variable on 𝑌 depends on the value of an other
𝑋 variable. For example, in our clothing expenditure example, the impact of
household size on clothing expenditure might depend on the household income.
Increasing the household size by one more person might have a larger effect on
clothing expenditure for richer households compared to poorer households.

To model such relationships we can use interaction terms. To interact two
variables we can estimate the model:

𝔼 [𝑌𝑖|𝑥1, 𝑥2] = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2

The 3rd term 𝑥𝑖1𝑥𝑖2 is called an interaction term. When we include this, the
expected value of 𝑌𝑖 given 𝑥𝑖1 now depends on the level of 𝑥𝑖2 (and vice versa).
To see this, let’s look at 𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2] for different values of 𝑥𝑖2:

𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2 = 0] = 𝛽0 + 𝛽1𝑥𝑖1
𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2 = 1] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2 + 𝛽3𝑥𝑖1
𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2 = 2] = 𝛽0 + 𝛽1𝑥𝑖1 + 2𝛽2 + 2𝛽3𝑥𝑖1

For each case, let’s increase 𝑥𝑖1 by one unit:

𝔼 [𝑌𝑖|𝑥𝑖1 + 1, 𝑥𝑖2 = 0] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽1
𝔼 [𝑌𝑖|𝑥𝑖1 + 1, 𝑥𝑖2 = 1] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽1 + 𝛽2 + 𝛽3𝑥𝑖1 + 𝛽3
𝔼 [𝑌𝑖|𝑥𝑖1 + 1, 𝑥𝑖2 = 2] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽1 + 2𝛽2 + 2𝛽3𝑥𝑖1 + 2𝛽3

Taking the difference for each case:

𝔼 [𝑌𝑖|𝑥𝑖1 + 1, 𝑥𝑖2 = 0] − 𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2 = 0] = 𝛽1
𝔼 [𝑌𝑖|𝑥𝑖1 + 1, 𝑥𝑖2 = 1] − 𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2 = 1] = 𝛽1 + 𝛽3
𝔼 [𝑌𝑖|𝑥𝑖1 + 1, 𝑥𝑖2 = 2] − 𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2 = 2] = 𝛽1 + 2𝛽3
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So:

• When 𝑥𝑖2 = 0, a unit increase in 𝑥𝑖1 increases 𝑌𝑖 by 𝛽1 on average.
• When 𝑥𝑖2 = 1, a unit increase in 𝑥𝑖1 increases 𝑌𝑖 by 𝛽1 + 𝛽3 on average.
• When 𝑥𝑖2 = 2, a unit increase in 𝑥𝑖1 increases 𝑌𝑖 by 𝛽1 + 2𝛽3 on average.

When we include an interaction term, we therefore need to look at both 𝛽1 and
𝛽3 to learn about the impact of 𝑥𝑖1 on 𝑌𝑖.

23.2 Interaction Terms in R
Let’s try this out with the clothing expenditure data. We want to interact
household income (𝑋𝑖1) with household size (𝑋𝑖2) and estimate the model:

𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖1𝑥𝑖2

One way to do this is to create a new variable with the interaction and add it
to the model. Let’s try this first:

df <- read.csv("clothing-exp.csv")
df$hh_inc_hh_size <- df$hh_inc * df$hh_size
summary(lm(clothing_exp ~ hh_inc + hh_size + hh_inc_hh_size, data = df))

Call:
lm(formula = clothing_exp ~ hh_inc + hh_size + hh_inc_hh_size,

data = df)

Residuals:
Min 1Q Median 3Q Max

-0.26738 -0.05882 -0.00592 0.05793 0.44451

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0090748 0.0312002 0.291 0.771
hh_inc 0.0809904 0.0009976 81.189 <2e-16 ***
hh_size 0.0082387 0.0103454 0.796 0.426
hh_inc_hh_size 0.0003971 0.0003040 1.306 0.192
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1029 on 296 degrees of freedom
Multiple R-squared: 0.9922, Adjusted R-squared: 0.9921
F-statistic: 1.25e+04 on 3 and 296 DF, p-value: < 2.2e-16

But because interaction terms are so common in linear regression models, R has
a shortcut to do this. All we have to do is include x1 * x2 in the formula and
R will include the two level terms and the interaction term. So when we do this
we don’t even need to add the individual x1 and x2 variables. Let’s try this out:
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summary(lm(clothing_exp ~ hh_inc * hh_size, data = df))

Call:
lm(formula = clothing_exp ~ hh_inc * hh_size, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.26738 -0.05882 -0.00592 0.05793 0.44451

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0090748 0.0312002 0.291 0.771
hh_inc 0.0809904 0.0009976 81.189 <2e-16 ***
hh_size 0.0082387 0.0103454 0.796 0.426
hh_inc:hh_size 0.0003971 0.0003040 1.306 0.192
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1029 on 296 degrees of freedom
Multiple R-squared: 0.9922, Adjusted R-squared: 0.9921
F-statistic: 1.25e+04 on 3 and 296 DF, p-value: < 2.2e-16

We get the same as above! The term hh_inc:hh_size is the interaction term
(Note: we can add an interaction term without the level terms to the model
using x1:x2, but you should always include the level terms when doing an
interaction).

Let’s interpret this. All terms, including the interaction term, are positive.
With this model neither household size nor the interaction term are statistically
significant. Ignoring statistical significance, we can interpret the parameter
estimates as follows:

• The larger the household size, the larger the effect of a unit increase in
income on clothing expenditure.

– This makes sense because if a large household gets more income they
have more people they can buy clothes for.

• The higher the household income, the larger the effect of a unit increase
in household size on clothing expenditure.

– This makes sense because if a richer household gets one more member
in it, they have more money to buy clothes for the additional person.
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Chapter 24

Dummy Variables

24.1 Introduction
Very often we have categorical variables that can take on two values. Examples
of this are:

• Yes/no questions in a survey.
• Gender (at birth).
• Whether you have a college degree or not.

Because these are categorical variables and not numeric variables, we cannot
include them in our regression model directly. However we can code a numeric
variable that contains the information from the categorical variable. Such a
variable is called a dummy variable.

A dummy variable is a variable that = 1 if something is true and = 0 if it is
false:

• For the yes/no questions, we can create a variable that = 1 for “yes”
responses and = 0 for “no” responses.

• For the gender variable, we can create a variable that = 1 if observation
is female and = 0 if male. Such a variable is called a “female dummy”.

– We could alternatively create a “male dummy” that = 1 for male and
= 0 for female.

• For the college degree variable, we can create a variable that = 1 if the
observation has a college degree and = 0 if not. Such a variable is called
a “college degree dummy”.
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24.2 Theory
Consider a simple linear regression model with a dummy variable:

𝔼 [𝑌𝑖|𝑥𝑖] = 𝛽0 + 𝛽1𝑥𝑖

- When the dummy variable equals 0, the expected value of 𝑌𝑖 is 𝔼 [𝑌𝑖|𝑥𝑖 = 0] =
𝛽0. Call this 𝜇0. - When the dummy variable equals 1, the expected value of 𝑌𝑖
is 𝔼 [𝑌𝑖|𝑥𝑖 = 1] = 𝛽0 + 𝛽1. Call this 𝜇1.

The difference in means between the two groups, 𝜇1 − 𝜇0, is equal to 𝛽1. There-
fore we can estimate this regression model to estimate the difference in means,
and hypothesis tests on 𝛽1 are equivalent to hypothesis tests for the difference
in means.

24.3 Dummy Variable Trap
Suppose we created two variables:

1. 𝑥𝑖1 is a female dummy that = 1 for females and = 0 for males.
2. 𝑥𝑖2 is a male dummy that = 1 for males and = 0 for females.

We could use either one of these to estimate the model above to get the difference
in means. But what we cannot do is estimate a model with both variables. This
is because 𝑥𝑖1 = 1 − 𝑥𝑖2 for every observation (when 𝑥𝑖1 = 0, 𝑥𝑖2 = 1 and vice
versa). If we include both variables we run into the problem of strict collinearity
and R will drop one of the variables. This problem is called the dummy variable
trap. When we have a qualitative variable with two values we need to choose
one value for zero (what we call the base level or base category) and the other
for one and not include both.

24.4 Dummy Variables in R
The example datasets we worked with so far do not have categorical variables.
We therefore will employ a new dataset to illustrate how to estimate and inter-
pret a model with a dummy variable.

The dataset wages2.csv contains wage data for 𝑛 = 526 people from the 1976
Current Population Survey in the US.

The variables are:

• wage: Average hourly earnings (in USD).
• educ: Years of education.
• female: Female dummy.
• married: Married dummy.

We will use these data to test (with 𝛼 = 0.05) if the average hourly wage of men
is more than $2.00 larger than the mean hourly wage of women.

https://walshc.github.io/stats2/wages2.csv
https://www.census.gov/programs-surveys/cps.html
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Mathematically, we want to test if 𝜇0 − 2 > 𝜇1. In words: the population mean
hourly wage for men minus 2 is greater than the mean hourly wage for women.
This will be our 𝐻1. Rewriting this as 𝜇1 − 𝜇0 < −2 means we can use a simple
linear regression model with a female dummy to test if 𝛽1 < −2.

Let’s estimate the regression model in R:

df <- read.csv("wages2.csv")
m <- lm(wage ~ female, data = df)
summary(m)

Call:
lm(formula = wage ~ female, data = df)

Residuals:
Min 1Q Median 3Q Max

-5.5995 -1.8495 -0.9877 1.4260 17.8805

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.0995 0.2100 33.806 < 2e-16 ***
female -2.5118 0.3034 -8.279 1.04e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.476 on 524 degrees of freedom
Multiple R-squared: 0.1157, Adjusted R-squared: 0.114
F-statistic: 68.54 on 1 and 524 DF, p-value: 1.042e-15

Let’s interpret the coefficient estimates before running the test. The intercept
is the estimate of 𝔼 [𝑌𝑖|𝑥𝑖1 = 0] = 𝛽0. It means the average wage of men in
the data is $7.10. The estimate of the slope 𝛽1 is the difference between the
mean hourly wage of women and the mean hourly wage of men. Thus women
on average earn $2.51 less than men in the data.

We can also get these numbers by calculating the means by group directly:

mean(df$wage[df$female == 0])

[1] 7.099489

mean(df$wage[df$female == 1])

[1] 4.587659

The difference in means is then:

mean(df$wage[df$female == 1]) - mean(df$wage[df$female == 0])

[1] -2.51183
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which corresponds to the estimate of the slope.

We could also get the means by group using the aggregate() function:

aggregate(wage ~ female, data = df, FUN = mean)

female wage
1 0 7.099489
2 1 4.587659

We are now ready to perform the hypothesis test. We set up the null and
alternative hypothesis:

𝐻0 ∶ 𝛽1 ≥ −2
𝐻1 ∶ 𝛽1 < −2

Under 𝐻0, the test statistic 𝑇 = 𝐵1−(−2)
𝑆𝐵1

follows a 𝑡 distribution with 𝑛 − 2
degrees of freedom (524).

Let’s calculate the value of the test statistic in R:

b_1 <- coef(summary(m))["female", "Estimate"]
s_b_1 <- coef(summary(m))["female", "Std. Error"]
(t <- (b_1 + 2) / s_b_1)

[1] -1.686931

This is a lower tail test. If we are using the critical value method, we reject 𝐻0
if 𝑡 ≤ 𝑡𝛼,𝑛−2. We can calculate the critical value in R with:

(cv <- qt(0.05, m$df.residual))

[1] -1.647767

t < cv

[1] TRUE

The test statistic is smaller than the critical value (lies in the rejection region)
so we reject the null hypothesis.

If we are using the 𝑝-value method we can calculate the 𝑝-value with:

(pval <- pt(t, m$df.residual))

[1] 0.04610592

pval < 0.05

[1] TRUE

The 𝑝-value (0.0461) is smaller than the significance level (0.05) so we reject the
null hypothesis.
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In both cases we reject the null hypothesis. Thus there is sufficient evidence for
the claim that men earn more than $2 more than women at the 5% level.

24.5 Multiple Linear Regression with Dummy
Variables

We can also use dummy variables in a multiple linear regression model. Using
the same data, let’s see if these differences in wages be explained by different
levels of educational attainment. To do this we want to compare the average
wages of women and men of the same education level.

Let 𝑥𝑖1 be years of education and 𝑥𝑖2 be the female dummy. The expected wage
for men given the education level is:

𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2 = 1] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2 × 1 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2

The expected wage for women given the education level is:

𝔼 [𝑌𝑖|𝑥𝑖1, 𝑥𝑖2 = 0] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2 × 0 = 𝛽0 + 𝛽1𝑥𝑖1

Taking differences yields 𝛽2. This is the difference in mean wages holding edu-
cation fixed.

Let’s estimate the model in R:

df <- read.csv("wages2.csv")
m <- lm(wage ~ educ + female, data = df)
summary(m)

Call:
lm(formula = wage ~ educ + female, data = df)

Residuals:
Min 1Q Median 3Q Max

-5.9890 -1.8702 -0.6651 1.0447 15.4998

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.62282 0.67253 0.926 0.355
educ 0.50645 0.05039 10.051 < 2e-16 ***
female -2.27336 0.27904 -8.147 2.76e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.186 on 523 degrees of freedom
Multiple R-squared: 0.2588, Adjusted R-squared: 0.256
F-statistic: 91.32 on 2 and 523 DF, p-value: < 2.2e-16
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The estimated coefficient on the female dummy is now −2.27, compared to
−2.51 before. This means that women in this sample on average earned $2.27
less than men of the same education level.



Chapter 25

Qualitative Variables with
Multiple Levels

25.1 Introduction
In Chapter 24 we learned how to use qualitative variables with two values - such
as gender - in a regression model. By including a dummy variable for one of
the gender values, we were able to cover all the possible values that the gender
could take: = 1 for females and = 0 for males.

But often we have data with qualitative variables that can take on more than
two values. For example we could have variables like:

• Educational attainment: High school, Bachelor, Master, PhD.
• Industry: Primary sector (e.g.~agriculture), Manufacturing, Services.
• Region: US States, Provinces of the Netherlands.

What we will learn in this chapter is how to include this kind of information in
a linear regression model.

25.2 Theory
Suppose we are interested in the impact of industry sector on wages. We have
a sample of wages 𝑌𝑖 for 𝑛 individuals and what sector they work in (𝑠𝑒𝑐𝑡𝑜𝑟𝑖):
primary, manufacturing or services.

25.2.1 The Incorrect Approach
Suppose for the moment we decided to follow the logic in Chapter 24 and created
a numeric variable 𝑥𝑖1 with the sector information as follows:
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• = 0 if 𝑠𝑒𝑐𝑡𝑜𝑟𝑖 = primary.
• = 1 if 𝑠𝑒𝑐𝑡𝑜𝑟𝑖 = manufacturing.
• = 2 if 𝑠𝑒𝑐𝑡𝑜𝑟𝑖 = services.

Suppose also we used this variable to estimate the regression model:

𝔼[𝑌𝑖|𝑥𝑖1] = 𝛽0 + 𝛽1𝑥𝑖1

We will see now that this approach is incorrect.

For individuals in the primary sector we have:

𝔼[𝑌𝑖|𝑥𝑖1 = 0] = 𝛽0

Therefore 𝛽0 is the average wage of people in the primary sector.

For individuals in the manufacturing sector we have:

𝔼[𝑌𝑖|𝑥𝑖1 = 1] = 𝛽0 + 𝛽1

This means that 𝛽1 is the average difference in wages between people in the
manufacturing sector and the primary sector.

But then for individuals in the services sector we have:

𝔼[𝑌𝑖|𝑥𝑖1 = 2] = 𝛽0 + 2𝛽1

This means that 𝛽1 is also the average difference in wages between people in the
services sector and the manufacturing sector! It also means that the difference
in wages between services and the primary sector is 2𝛽1.

Using a variable like this means that going from one sector to the next leads to
an increase in wage of 𝛽1 on average for all sectors. But there is no reason to
think that going from primary to manufacturing and manufacturing to services
will lead to the same average increase in wage. This is a very restrictive way
to use this variable. We want a more flexible way to use the information about
the sector in the model.

25.3 The Correct Approach
Instead of creating one numeric variable with the information from the qualita-
tive variable what we should do is create a dummy variable for each value of
the categorical variable. For the sector example we create 3 variables:

1. 𝐷𝑖1 = 1 if primary sector and 𝑥𝑖1 = 0 otherwise.
2. 𝐷𝑖2 = 1 if manufacturing sector and 𝑥𝑖2 = 0 otherwise.
3. 𝐷𝑖3 = 1 if services sector and 𝑥𝑖3 = 0 otherwise.

We then estimate a regression model using these dummy variables. We cannot
include all 3 dummy variables because otherwise we run into the dummy variable
trap we encountered in Chapter 24. This is because 𝐷𝑖1 = 1−𝐷𝑖2 −𝐷𝑖3 always:
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• If 𝐷𝑖1 = 0 then one of 𝐷𝑖2 or 𝐷𝑖3 equals 1.
• If 𝐷𝑖1 = 1 then 𝐷𝑖2 = 𝐷𝑖3 = 0.

We need to choose one category to be the base category. Let’s let this be the
primary sector. The model we would estimate is then:

𝔼[𝑌𝑖|𝑠𝑒𝑐𝑡𝑜𝑟𝑖] = 𝛽0 + 𝛽1𝐷𝑖2 + 𝛽2𝐷𝑖3
For the primary sector we have:

𝔼[𝑌𝑖|𝑠𝑒𝑐𝑡𝑜𝑟𝑖 = primary] = 𝛽0

For the manufacturing sector we have:

𝔼[𝑌𝑖|𝑠𝑒𝑐𝑡𝑜𝑟𝑖 = manufacturing] = 𝛽0 + 𝛽1

For the services sector we have:

𝔼[𝑌𝑖|𝑠𝑒𝑐𝑡𝑜𝑟𝑖 = services] = 𝛽0 + 𝛽2

So:

• 𝛽1 is the average difference between the manufacturing and primary sec-
tors.

• 𝛽2 is the average difference between the services and primary sectors.
• 𝛽2 − 𝛽1 is the average difference between the services and manufacturing

sectors.

Now the model is much more flexible.

25.4 Qualitative Variables in R
To show how to do this in R we will use a dataset on the average house prices
𝑌𝑖 by municipality (gemeente) in the Netherlands in 2022 and the province each
municipality is in, 𝑝𝑟𝑜𝑣𝑖. We will use this dataset to see how much location
(province) impacts house prices.

To do this we create 12 dummy variables, one for each province:

• 𝐷𝑖1 = 1 if 𝑝𝑟𝑜𝑣𝑖 = Drenthe and zero otherwise.
• 𝐷𝑖2 = 1 if 𝑝𝑟𝑜𝑣𝑖 = Flevoland and zero otherwise.
• ⋮
• 𝐷𝑖12 = 1 if 𝑝𝑟𝑜𝑣𝑖 = Zuid-Holland and zero otherwise.

Because 𝐷𝑖1 = 1−𝐷𝑖2 −𝐷𝑖3 −⋯−𝐷𝑖12 for all 𝑖, we need to exclude one province
to avoid the dummy variable trap. Let’s choose Drenthe (𝐷𝑖1) to be the base
level.

The model is then:

𝔼 [𝑌𝑖|𝑝𝑟𝑜𝑣𝑖] = 𝛽0 + 𝛽1𝐷𝑖2 + 𝛽2𝐷𝑖3 + ⋯ + 𝛽11𝐷𝑖12

To get the data ready we merge the following two datasets by municipality:



156CHAPTER 25. QUALITATIVE VARIABLES WITH MULTIPLE LEVELS

• cpb-house-prices.csv
• municipality-province.csv

We need to be careful that the house prices data uses ; for separators and
commas for decimal points:

df1 <- read.csv("cpb-house-prices.csv", sep = ";", dec = ",")
names(df1) <- c("municipality", "house_price_2022", "house_price_2021")
df2 <- read.csv("municipality-province.csv")
names(df2) <- c("municipality", "province")
df <- merge(df1, df2, by = "municipality")

Next, what we could do is spend a lot of time creating 11 dummy variables, one
for each province, and then typing all 11 into the formula in the lm() function.
The good news is that there is no need to do this with R. If we provide a
character vector into the lm() function, R will interpret it as a factor variable
(a qualitative variable), and automatically create these dummies. R will also
choose one level to be the base level automatically. Unless the variable is already
a factor R will always choose the first value alphabetically (here Drenthe) to be
the base level.

So estimating this model is as simple as:

m <- lm(house_price_2022 ~ province, data = df)
summary(m)

Call:
lm(formula = house_price_2022 ~ province, data = df)

Residuals:
Min 1Q Median 3Q Max

-270.55 -51.18 -8.15 33.68 577.65

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 381.308 27.768 13.732 < 2e-16 ***
provinceFlevoland 7.242 48.095 0.151 0.8804
provinceFryslân -10.419 35.848 -0.291 0.7715
provinceGelderland 53.907 30.862 1.747 0.0816 .
provinceGroningen -84.728 41.186 -2.057 0.0405 *
provinceLimburg -38.889 32.704 -1.189 0.2352
provinceNoord-Brabant 61.476 30.599 2.009 0.0453 *
provinceNoord-Holland 159.944 31.326 5.106 0.000000559 ***
provinceOverijssel -4.944 33.781 -0.146 0.8837
provinceUtrecht 137.172 33.570 4.086 0.000055142 ***
provinceZeeland -43.208 38.507 -1.122 0.2626
provinceZuid-Holland 62.294 30.982 2.011 0.0452 *
---

https://walshc.github.io/stats2/cpb-house-prices.csv
https://walshc.github.io/stats2/municipality-province.csv
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 96.19 on 329 degrees of freedom
Multiple R-squared: 0.3251, Adjusted R-squared: 0.3026
F-statistic: 14.41 on 11 and 329 DF, p-value: < 2.2e-16

Let’s interpret these estimates. We first note that:

𝔼 [𝑌𝑖|𝑝𝑟𝑜𝑣𝑖 = Drenthe] =𝛽0 + 𝛽1 × 0 + 𝛽2 × 0 + ⋯ + 𝛽10 × 0 + 𝛽11 × 0 = 𝛽0
𝔼 [𝑌𝑖|𝑝𝑟𝑜𝑣𝑖 = Flevoland] =𝛽0 + 𝛽1 × 1 + 𝛽2 × 0 + ⋯ + 𝛽10 × 0 + 𝛽11 × 0 = 𝛽0 + 𝛽1

⋮
𝔼 [𝑌𝑖|𝑝𝑟𝑜𝑣𝑖 = Zuid-Holland] =𝛽0 + 𝛽1 × 0 + 𝛽2 × 0 + ⋯ + 𝛽10 × 0 + 𝛽11 × 1 = 𝛽0 + 𝛽11

So our estimate of 𝛽0 is the average house price in Drenthe in our sample. Be-
cause house prices are in thousands of euros, the average house price in Drenthe
in our sample is €381,308.33. Our estimate of 𝛽0 + 𝛽1 is the average house
price in Flevoland in our sample. This is €381,308.33+€7,241.67=€388,550.00.
Our estimate of 𝛽1 is therefore the difference in average house price between
Flevoland and Drenthe in our sample.

We will now do some example questions with this output.

One example is: “are there any differences in average house prices across
provinces (at the 5% level)?”

To do this, let 𝜇𝑗 be the population average house price in province 𝑗 =
1, 2, … , 12. This question is essentially asking to test:

𝐻0 ∶𝜇1 = 𝜇2 = ⋯ = 𝜇12
𝐻1 ∶ at least one 𝜇𝑗 ≠ 𝜇𝑘 for 𝑗, 𝑘 = 1, … , 12

Using our model with 11 dummy variables (with Drenthe as the base category),
this is the same as:

𝐻0 ∶ 𝛽1 = 𝛽2 = ⋯ = 𝛽11 = 0
𝐻1 ∶ at least one 𝛽𝑗 ≠ 0 for 𝑗 = 1, 2, … , 11

This is just an 𝐹 -test for testing the model’s usefulness!

Let’s do the 𝐹 -test as a recap. Under 𝐻0, 𝐹 ∼ 𝐹𝑘,𝑛−𝑘−1. We can get the value
of the test statistic from the model summary:

summary(m)$fstat

value numdf dendf
14.40891 11.00000 329.00000

The critical value can be found with (using numdf and dendf from above to get
the numerator and denominator degrees of freedom):

qf(0.95, 11, 329)
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[1] 1.817809

Because the test statistic (14.409) is larger than the critical value (1.818) we re-
ject the null hypothesis. There is sufficient evidence to suggest that the average
house prices are different across provinces.

We can also use the 𝑝-value approach. The 𝑝-value for the 𝐹 -test is already
shown in the summary output, but we could also obtain it manually using:

f_stat <- summary(m)$fstat[1]
(p_val <- 1 - pf(f_stat, 11, 329))

value
0

The 𝑝-value (0) is smaller than the significance level (0.05), so we also reject 𝐻0
with this approach.

25.5 Specifying the Base Level
The coefficient estimates 𝑏1, …, 𝑏11 are always interpreted as the differences with
respect to the base level. Because of this, we may want to specify the base level
to help us interpret the results. By default, R chooses Drenthe as the base level.
But we may want to use Noord-Brabant or another province as the base level.
How can we do this?

To do this we first convert the variable to a factor and then “relevel” the factor
variable using the relevel() function specifying the base level. Let’s do this
making Noord-Brabant the base level:

df$province <- factor(df$province)
df$province <- relevel(df$province, ref = "Noord-Brabant")
summary(lm(house_price_2022 ~ province, data = df))

Call:
lm(formula = house_price_2022 ~ province, data = df)

Residuals:
Min 1Q Median 3Q Max

-270.55 -51.18 -8.15 33.68 577.65

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 442.7839 12.8540 34.447 < 2e-16 ***
provinceDrenthe -61.4756 30.5986 -2.009 0.045343 *
provinceFlevoland -54.2339 41.3198 -1.313 0.190252
provinceFryslân -71.8950 26.0626 -2.759 0.006130 **
provinceGelderland -7.5682 18.6185 -0.406 0.684647
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provinceGroningen -146.2039 33.0225 -4.427 0.000012994 ***
provinceLimburg -100.3646 21.5336 -4.661 0.000004582 ***
provinceNoord-Holland 98.4683 19.3781 5.081 0.000000629 ***
provinceOverijssel -66.4199 23.1372 -2.871 0.004361 **
provinceUtrecht 75.6968 22.8275 3.316 0.001015 **
provinceZeeland -104.6839 29.6136 -3.535 0.000466 ***
provinceZuid-Holland 0.8181 18.8163 0.043 0.965346
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 96.19 on 329 degrees of freedom
Multiple R-squared: 0.3251, Adjusted R-squared: 0.3026
F-statistic: 14.41 on 11 and 329 DF, p-value: < 2.2e-16

Now the intercept is the average house price in Noord-Brabant and all the coef-
ficient estimates are differences between Noord-Brabant. For example, houses
in Drenthe are on average €61,475.6 cheaper than Noord-Brabant while houses
in Noord-Holland are on average €98,468.3 more expensive.

25.6 Interaction Terms with Dummy Variables
We can also combine dummy variables with interaction terms. Consider the
following model with the wages2.csv data, where 𝑌𝑖 is the hourly wage:

𝔼 [𝑌𝑖|𝑒𝑑𝑢𝑐𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖] = 𝛽0+𝛽1𝑒𝑑𝑢𝑐𝑖+𝛽2𝑓𝑒𝑚𝑎𝑙𝑒𝑖+𝛽3𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖+𝛽4𝑓𝑒𝑚𝑎𝑙𝑒𝑖×𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖

Holding 𝑒𝑑𝑢𝑐𝑖 fixed, there are 4 possible combinations for the female and married
dummies:

Unmarried men: 𝔼 [𝑌𝑖|𝑒𝑑𝑢𝑐𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖 = 0, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖 = 0] = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑖
Unmarried women: 𝔼 [𝑌𝑖|𝑒𝑑𝑢𝑐𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖 = 1, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖 = 0] = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑖 + 𝛽2

Married men: 𝔼 [𝑌𝑖|𝑒𝑑𝑢𝑐𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖 = 0, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖 = 1] = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑖 + 𝛽3
Married women: 𝔼 [𝑌𝑖|𝑒𝑑𝑢𝑐𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖 = 1, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖 = 1] = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑖 + 𝛽2 + 𝛽3 + 𝛽4

Holding education fixed:

• 𝛽2 is the average difference in wage between unmarried women and un-
married men.

• 𝛽3 is the average difference in wage between married men and unmarried
men.

• 𝛽2 + 𝛽4 is the average difference in wage between married women and
married men.

• 𝛽3 + 𝛽4 is the average difference in wage between married women and
unmarried women.

So:

• 𝛽2 is the wage gap for unmarried women.

https://walshc.github.io/stats2/wages2.csv
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• 𝛽2 + 𝛽4 is the wage gap for married women.
• 𝛽4 can therefore be interpreted as the difference in wage gap between

married and unmarried women.

Let’s estimate it in R:

df <- read.csv("wages2.csv")
m <- lm(wage ~ educ + female * married, data = df)
summary(m)

Call:
lm(formula = wage ~ educ + female * married, data = df)

Residuals:
Min 1Q Median 3Q Max

-6.5907 -1.6293 -0.7337 1.1014 14.6606

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.02442 0.69311 -1.478 0.140
educ 0.49356 0.04856 10.164 < 2e-16 ***
female -0.36896 0.43341 -0.851 0.395
married 2.64107 0.39936 6.613 0.0000000000933 ***
female:married -2.82883 0.55556 -5.092 0.0000004962244 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.065 on 521 degrees of freedom
Multiple R-squared: 0.3165, Adjusted R-squared: 0.3113
F-statistic: 60.32 on 4 and 521 DF, p-value: < 2.2e-16

We now interpret the estimates:

According to the model, 𝑏0 = −1.02442 means the expected wage for an unmar-
ried man with zero years of education is −$1.02.

Let’s see how many observations have 𝑒𝑑𝑢𝑐𝑖 = 𝑓𝑒𝑚𝑎𝑙𝑒𝑖 = 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖 = 0:

nrow(df[df$educ == 0 & df$female == 0 & df$married == 0, ])

[1] 0

No observations satisfy this. Therefore we should not trust this estimate.

Interpreting 𝑏1 i done as normal. Holding gender and marital status fixed,
increasing education by one year on average increases the wage by 49 cents.

To interpret 𝑏2 we need to be careful because female also appears in the inter-
action. When the variable married equals zero, then this term drops out and
we can interpret the variable as normal. So 𝑏2 is the average difference in wage
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between unmarried women and unmarried men, holding education fixed. So
holding education fixed, unmarried women on average earn 37 cents less than
unmarried men. The wage gap is therefore 37 cents for married women.

To interpret 𝑏3 we need to be careful because married also appears in the
interaction. When the female dummy equals zero, then this term drops out and
we can interpret the variable as normal. So 𝑏3 is the average difference in wage
between married men and unmarried men, holding education fixed. Holding
education fixed, married men on average earn $2.64 more than unmarried men.

Finally, for 𝑏4 we recall that above we showed that 𝛽4 can be interpreted as the
difference in wage gap between married and unmarried women. So holding edu-
cation fixed, the gender wage gap is $2.83 larger for married women compared
to unmarried women.

Let’s consider an example question from this output.

Holding education fixed, do unmarried women earn less than unmarried men
(at the 5% level)? Use a 𝑝-value approach.

This question is asking if 𝛽2 < 0, so the null and alternative hypotheses are
𝐻0 ∶ 𝛽2 ≥ 0 and 𝐻1 ∶ 𝛽2 < 0. Under 𝐻0, the test statistic 𝑇 = 𝐵2/𝑆𝐵2

∼ 𝑡𝑛−𝑘−1.
Because the hinge is zero, we can read the test statistic directly from the table:
𝑡 = −0.8513. However, the 𝑝-value in the table is for a two-sided test. We can
get the 𝑝-value with:

(t <- coef(summary(m))["female", "t value"])

[1] -0.8513

pt(t, m$df.residual)

[1] 0.1974969

The 𝑝-value (0.1975) is greater than the significance level (0.05), so we we do not
reject the null hypothesis. There is not enough evidence to show that unmarried
women earn less than unmarried men of equal education levels.
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Chapter 26

Testing and Correcting for
Heteroskedasticity

In the final three chapters we will revisit some of the model assumptions and
introduce formal tests and corrections for two of these. This chapter will discuss
testing and correcting for heteroskedasticity.

Under the homoskedasticity assumption Var (𝜀𝑖|𝑥𝑖1, … , 𝑥𝑖𝑘) = 𝜎2
𝜀 for all

𝑥𝑖1, … , 𝑥𝑖𝑘.

Heteroskedasticity is when the variance of the errors varies with the values of
the explanatory variables. In the presence of heteroskedasticity, the standard
errors may not be reliable. This frequently occurs in practice. We will now
learn:

• How to formally test for the prescence of heteroskedasticity.
• How to adjust the model’s standard errors for heteroskedasticity.

26.1 Formal Test for Heteroskedasticity
We can formally test for heteroskedasticity as follows.

1. Estimate the original model 𝔼 [𝑌𝑖|𝑥𝑖1, … , 𝑥𝑖𝑘] = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘𝑥𝑖𝑘
and save the residuals, 𝑒𝑖.

2. Estimate the auxiliary model which uses 𝑒2
𝑖 as the dependent variable:

𝔼 [𝑒2
𝑖 |𝑥𝑖1, … , 𝑥𝑖𝑘] = 𝛾0 + 𝛾1𝑥𝑖1 + ⋯ + 𝛾𝑘𝑥𝑖𝑘

3. Apply the 𝐹 -test for the usefulness of this model.

Under 𝐻0, 𝛾1 = ⋯ = 𝛾𝑘 = 0 and we have homoskedasticity (the dispersion of
the residuals does not vary with the independent variables). Under 𝐻1, at least

163
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one 𝛾𝑗 ≠ 0 and we have heteroskedasticity (the dispersion of the residuals does
not vary with the independent variables).

The logic of the test is that if the independent variables are useful at explaining
𝑒2

𝑖 , then the variance of the residuals does depend on the values of the indepen-
dent variables, violating homoskedasticity.

Let’s try this out with a regression model:

# Step 1: Estimate original model and save the residuals
df <- read.csv("wages2.csv")
m <- lm(wage ~ educ + female * married, data = df)
df$e <- m$residuals
# Step 2: Estimate the auxialiary model with the square of residuals
aux <- lm(e^2 ~ educ + female * married, data = df)
# Step 3: Apply the F-test:
summary(aux)$fstat

value numdf dendf
10.72187 4.00000 521.00000

qf(0.95, 4, 521)

[1] 2.389045

• Critical value approach: The F statistic (10.722) is larger than the critical
value (2.389). Therefore we reject the null hypothesis. There is evidence
of heteroskedasticity.

• 𝑝-value approach: The F test 𝑝-value (0.000) is smaller than the signif-
icance level (0.05). Therefore we reject the null hypothesis. There is
evidence of heteroskedasticity.

26.2 Correcting Standard Errors for Het-
eroskedasticity in R

The standard formula for the standard errors of the regression coefficients as-
sumes homoskedasticity. In the presence of heteroskedasticity there is another
formula that accounts and corrects for this. We won’t go into the details of this
formula, but we will learn how to get R to use these corrected standard errors.

To do this we use the function vcovHC() from the sandwich package. This
function name is from Variance Covariance Heteroskedasticity Consistent. The
package is called sandwich because the mathematical formula for the standard
errors has a “bread” component and a “meat” component with the form 𝑏𝑟𝑒𝑎𝑑×
𝑚𝑒𝑎𝑡 × 𝑏𝑟𝑒𝑎𝑑. Again, we won’t go into the details of this.

The function vcovHC() by itself doesn’t give us the corrected regression table.
We will use the coeftest() function from the package lmtest to do this.
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In practice, many people use these standard errors by default without even
doing a formal test for heteroskedasticity. This is because heteroskedasticity is
so common that the safe approach is to use heteroskedasticity-robust standard
errors all the time. However, in the exam you should only use these standard
errors if specifically instructed to use them. In normal cases you should use the
default standard errors from the summary() function.

Let’s get the regression table with the corrected standard errors in R:

library(lmtest)
library(sandwich)
coeftest(m, vcov = vcovHC(m))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.024421 0.787960 -1.3001 0.1941
educ 0.493559 0.059092 8.3524 6.088e-16 ***
female -0.368964 0.374822 -0.9844 0.3254
married 2.641066 0.404064 6.5363 1.505e-10 ***
female:married -2.828826 0.501106 -5.6452 2.714e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that the coefficient estimates are the same as before, but the standard
errors are slightly different. Because the test statistics for individual significance
and associated 𝑝-values depend on the standard errors, these also change.



166CHAPTER 26. TESTING AND CORRECTING FOR HETEROSKEDASTICITY



Chapter 27

Testing and Correcting for
Serial Correlation

27.1 Introduction
With time-series data, serial correlation in the error terms is very common. If
𝑒𝑡 is positive, 𝑒𝑡+1 is often positive in the following period. This is called first-
order autocorrelation. If this occurs, the default standard errors are no longer
reliable.

Sometimes changing the regression specification helps remove the problem. For
example:

• Using differences 𝑥𝑡 − 𝑥𝑡−1 instead of levels 𝑥𝑡.
• Using growth rates 𝑥𝑡−𝑥𝑡−1

𝑥𝑡−1
instead of levels 𝑥𝑡.

• Adding a time trend term to the model.

In this chapter we will learn how to formally test for first-order autocorrelation
and how to correct the standard errors for it.

27.2 Formal Test for First-Order Autocorrela-
tion

We can formally test for first-order autocorrelation as follows.

1. Estimate the original model:

𝔼 [𝑌𝑡|𝑥𝑡1, … , 𝑥𝑡𝑘] = 𝛽0 + 𝛽1𝑥𝑡1 + ⋯ + 𝛽𝑘𝑥𝑡𝑘

and save the residuals, 𝑒𝑡.
2. Create a new variable which is the lag of the residuals, 𝑒𝑡−1.
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3. Estimate the auxiliary model:

𝑒𝑡 = 𝛾0 + 𝛾1𝑒𝑡−1 + 𝜈𝑡

4. Apply the 𝑡-test (significance test) on 𝛾1. Under 𝐻0 there is no first-order
autocorrelation and under 𝐻1 is there is first-order autocorrelation.

In this auxiliary regression, 𝛾1 is the correlation coefficient between 𝑒𝑡 and 𝑒𝑡−1.
The logic behind the test is that if the previous period’s residual can predict
the current period’s one, then the residuals are not independent across time.

27.3 Testing for First-Order Autocorrelation in
R

Let’s see how to do these steps in R. We will use the Dutch GDP and exports
data we encountered in Chapter 8.

# Step 1: Estimate the original model and save the residuals:
df <- read.csv("nl-exports-gdp.csv")
m <- lm(gdp ~ exports, data = df)
df$e <- m$residuals
# Step 2: Create a new variable which is the lag of the residuals:
df$lag_e <- c(NA, df$e[1:(nrow(df)-1)])
# Step 3: Estimate the auxiliary model:
aux <- lm(e ~ lag_e, data = df)
# Step 4: Apply an individual significance test on the lagged residual term:
summary(aux)

Call:
lm(formula = e ~ lag_e, data = df)

Residuals:
Min 1Q Median 3Q Max

-24.806 -3.847 1.886 5.140 12.424

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.91581 1.19398 0.767 0.447
lag_e 0.94605 0.02968 31.878 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.773 on 52 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.9513, Adjusted R-squared: 0.9504
F-statistic: 1016 on 1 and 52 DF, p-value: < 2.2e-16
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The 𝑡-test for the individual significance of the lagged residual has a 𝑝-value
close to zero. This is very strong evidence for first-order serial correlation.

27.4 Taking Growth Rates
Before learning how to correct the standard errors for serial correlation, let’s
first try taking growth rates of both GDP and exports to see if the first-order
serial correlation problem goes away. Note that by taking growth rates we lose
the first observation because we do not know what the lagged value is in the
first period in the data. This is why we need to use the na.omit() function to
drop the missing observations.

df <- read.csv("nl-exports-gdp.csv")
df$lag_gdp <- c(NA, df$gdp[1:(nrow(df)-1)])
df$lag_exports <- c(NA, df$exports[1:(nrow(df)-1)])
df$gdp_growth <- (df$gdp - df$lag_gdp) / df$lag_gdp
df$exports_growth <- (df$exports - df$lag_exports) / df$lag_exports
df <- na.omit(df)
m <- lm(gdp_growth ~ exports_growth, data = df)
summary(m)

Call:
lm(formula = gdp_growth ~ exports_growth, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.0283831 -0.0084130 0.0006188 0.0099133 0.0268511

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.004750 0.002726 1.742 0.0873 .
exports_growth 0.380987 0.042394 8.987 0.00000000000364 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01317 on 52 degrees of freedom
Multiple R-squared: 0.6083, Adjusted R-squared: 0.6008
F-statistic: 80.76 on 1 and 52 DF, p-value: 0.000000000003638

We now repeat the formal test for serial autocorrelation to see if the problem
remains:

df$e <- m$residuals
df$lag_e <- c(NA, df$e[1:(nrow(df)-1)])
aux <- lm(e ~ lag_e, data = df)
summary(aux)
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Call:
lm(formula = e ~ lag_e, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.028405 -0.007534 -0.002025 0.008030 0.032830

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0002411 0.0017667 -0.136 0.892
lag_e 0.2116660 0.1354665 1.562 0.124

Residual standard error: 0.01286 on 51 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.04568, Adjusted R-squared: 0.02697
F-statistic: 2.441 on 1 and 51 DF, p-value: 0.1244

Now the lagged residual has a 𝑝-value greater than 0.05. There is no longer
evidence of first-order serial correlation.

27.5 Correcting for First-Order Autocorrelation
in R

If taking growth rates, differences or adding a trend term does not remove the
problem, you can correct the standard errors for serial correlation in a similar
way to how we corrected for heteroskedasticity. To do this we use the function
vcovHAC(), which corrects for both heteroskedasticity and autocorrelation.

We will now show how to do this in R. Let’s suppose for the moment that our
model with growth rates still suffered from serial correlation and we wanted to
correct for it.

library(lmtest)
library(sandwich)
coeftest(m, vcov = vcovHAC(m))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0047496 0.0030884 1.5379 0.1301
exports_growth 0.3809872 0.0437884 8.7006 0.00000000001012 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that the coefficient estimates are the same as before but the standard
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errors are slightly different (e.g. 0.0437884 instead of 0.042394 for the slope).
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Chapter 28

The Zero Conditional Mean
Assumption

28.1 Introduction
A crucial assumption in the linear regression model is that 𝔼 [𝜀𝑖|𝑥𝑖1, … , 𝑥𝑖𝑘] =
0. This assumption implies no correlation between the error term and the
explanatory variables. A violation of this assumption means our estimates of 𝛽𝑗
are either too big or too small, sometimes even turning the opposite sign! Recall
the class size and test scores example we saw in Chapter 8 where we saw that a
regression of test scores on class size can yield a positive coefficient estimate on
class size, even though we expect a negative one. Naturally this is much more
serious than having standard errors that are too small.

A common remedy to this problem is to add more explanatory variables to the
model that we suspect are correlated with our 𝑋 variables of interest and the
outcome variable 𝑌 . For example, adding the average socioeconomic status of
the students to the class size and test scores model.

In this chapter we will briefly discuss some other solutions to the problem. At
the very end of this chapter we will also have a brief discussion on some other
model assumptions.

28.2 Experiments and Natural Experiments
Often adding more explanatory variables does not solve the problem. This is
usually because there are variables which we would like to include but we do
not have data on them (they are unobserved).

One way to solve this is to run an experiment: If we change 𝑋 for individuals
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randomly and observe their outcomes 𝑌 , the randomness guarantees no correla-
tion with the error. For example, we could randomly put students into classes
of different sizes and observe their test scores afterwards.

But often we can’t run an experiment because it’s too expensive or unethical.
For example, if we want to know the effect of a college degree on future wages,
it would be unethical to stop people who would otherwise have went to college
from obtaining a degree just to see how much less income they would make.

When an experiment is too expensive or unethical, sometimes we can use a “nat-
ural experiment”. This is when there is an institutional feature that generates
randomness in a variable. Returning to the class size and test scores example.
In Israel, you have to go to a particular school based on where you live. There
are strict rules that determine the number of classrooms in a school district:

• If there are 40 students to be enrolled, there is only 1 classroom.
• If there are 41 students to be enrolled, they are split into 2 classrooms

(one with 20 and one 21 students).

Having 40 versus 41 students enrolled in a year is effectively random. Therefore
if we compare test scores only between schools with 40 students (big classrooms)
and 41 students (small classrooms), we can get the causal effect of classroom
size on test scores.

Here is another example of a natural experiment. Suppose we want to estimate
the effect of attending an elite secondary school (a dummy variable 𝑋) on future
earnings (𝑌 ):

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖

Often people who attend these schools are very able and productive. But able
and productive people can find better jobs, regardless of where they go to school.
So the 𝑋 variable is correlated with the error term.

Ability/productivity is a difficult variable to measure precisely, so we can’t add
it to our model. It would also be both prohibitively expensive and unethical to
randomly force some people to attend an elite school and others not.

So we rely on the natural experiment approach. We can make use of the fact
that some elite schools have an entrance exam where you can enter if you achieve
a minimum score on the exam. Students that just barely passed and just barely
failed scored very similar on the exam, and on average should be similar to each
other. Just some people were lucky and just about passed, while others had
some bad luck and scored just below the required grade. By comparing future
earnings only between those just above and just below the passing grade, we
can get the causal effect.
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28.3 Other Model Assumptions
We end this chapter with a very brief discussion of the other model assumptions
and possible remedies for violations.

28.3.1 Non-Linearities or Non-Normal Error Terms
We will not discuss a formal test for these. If based on an analysis of scatter plots
you suspect a violation of either of these, a change in the model specification
can help. For example:

• Taking the natural logarithm of either the 𝑌 variable, the 𝑋 variable, or
both.

• Transforming levels of a variable 𝑋𝑡 to either:
– Changes: 𝑋𝑡 − 𝑋𝑡−1.
– Growth rates (𝑋𝑡 − 𝑋𝑡−1) /𝑋𝑡−1.

• Add higher-order terms (such as 𝑋2) to the model.

28.3.2 Perfect Collinearity
We won’t discuss a formal test for this because R automatically “drops” variables
that suffer from it. We will know immediately if it is present in our model. The
remedy is simple: we just have to drop the offending variables from the model.
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