
Do I Really Want to Buy This? Preference Discovery
and Consumer Search *

Tobias J. Klein† Christoph Walsh‡ Tinghan Zhang§

This draft: June 9, 2025

Abstract

One of the most invoked assumptions in economics is that consumers know their pref-
erences when making choices. Although theories and experiments in psychology and be-
havioral economics suggest that this may be unrealistic, there is relatively little evidence
from the field on this question. In this paper, we use detailed clickstream data from a large
Central Asian online platform to study the extent to which consumers learn about their
preferences while searching for a smartphone. To quantify the speed at which this takes
place and account for other factors, most notably that consumers obtain additional product
information when they inspect product pages, we estimate a rich search model in which
consumers learn about their willingness to pay each time they visit the checkout page.
Consumers initially underestimate their price sensitivity and update it along the way. Tak-
ing this into account shows that consumers are more price sensitive than a standard search
model would predict, and an intervention that prompts consumers to end their search early
can lead to potential welfare loss.
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1 Introduction

A fundamental assumption commonly invoked in modern economics is the utility-maximizing

behavior. This implicitly assumes that decision makers know their preferences. However, this

assumption is frequently challenged in behavioral and psychological studies. Preference discov-

ery may be particularly likely to occur when decision-makers lack experience or are unfamiliar

with the decision environment (Ariely et al., 2003). For instance, consider a consumer who

wants to buy an expensive and durable product, such as a smartphone, a car, or a fridge. This is

a decision she takes infrequently, perhaps every few years. She needs to choose from a range of

differentiated and complex options that evolve quickly over time. Even with complete informa-

tion on all products, accurately evaluating each option is a difficult task. As a result, the choices

she makes may not align with her true preferences.

On the other hand, as consumers gain decision-making experience, they reflect on past

choices to better understand their true preferences—a process known as preference discovery

(Plott, 1996). Preference discovery helps consumers evaluate the utility of alternatives more ac-

curately in subsequent decisions, aligning these decisions more closely to true utility maximiza-

tion (Kahneman et al., 1997; Keller and Rady, 1999). While experimental evidence increasingly

highlights the prevalence of preference discovery in consumer behavior, its empirical impact in

real-world markets remains underexplored.

This paper studies preference discovery within the context of consumer search and high-

lights its importance in evaluating market competition, strategies, and policies. In online retail,

consumers typically begin their shopping journey with limited information on available op-

tions and search for additional product details to make more informed decisions. We propose

that the search process enables consumers to accumulate experience and reflect on it, foster-

ing preference discovery that, in turn, influences subsequent search and purchase decisions.

Failing to consider potential preference discovery in the search process can lead to misinter-

preting the motivations behind consumer behavior at different stages on shopping platforms,

resulting in inaccurate market strategy predictions. For example, if consumers prioritize prod-

uct quality when searching but shift their focus to price when purchasing, firms that advertise

higher-quality, more expensive products might yield lower returns than those that implement
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discount strategies. Moreover, since preference discovery often stems from reflecting on search

decisions, regulators should be mindful of potential consumer surplus losses when sellers so-

licit consumers to purchase too quickly. For instance, flash sale discounts may prompt hasty

purchases and cut short the search process, which not only reduces the range of products they

might have otherwise searched but also leads to purchases that may be worse within the nar-

rowed search set of options. Understanding and quantifying preference discovery in consumer

search is thus vital for businesses and regulators to address these issues effectively.

Using clickstream data from a Central Asian online platform that tracks mobile phone sales

and consumer checkout behavior, we exploit institutional features to separate the effect of pref-

erence discovery from that of information acquisition in consumer search. The platform em-

ploys a streamlined checkout design: no cart, no extra transaction details, and only a few clicks

to complete a purchase. Yet in 59% of cases, we observe consumers enter the checkout page

but not immediately pay, either inspecting other products or leaving the site.1

Our interpretation suggests that consumers tend to reflect at the checkout stage, asking them-

selves, “Do I really want to buy this?” and make the decision to abandon their checkouts.

In the absence of additional information input, we argue that the decision is triggered by the

consumer’s behavioral reaction to the decision-making, with preference discovery, particularly

regarding price sensitivity, playing a key role. During the search stage, consumers primarily

compare various attributes across alternatives, such as brand or quality. At the checkout stage,

however, they are prompted to reflect on their choice behavior by reassessing the product’s

benefits relative to its monetary cost. This reflection enables consumers to gain a deeper under-

standing of their preferences and more accurately determine their true willingness to pay. As a

result, adjustments in perceived price sensitivity are manifested in checkout abandonment and

in subsequent search and purchase decisions.

Several existing behavioral and experimental studies support our interpretation. The “pain

of paying” theory (Zellermayer, 1996; Prelec and Loewenstein, 1998) posits that psychological

discomfort associated with spending increases price sensitivity. Prospect theory (Kahneman and

1A related concept that includes checkout abandonment is cart abandonment. However, cart abandonment does not
necessarily indicate a clear intention to purchase. It may occur for research, organizing, bookmarking, waiting for
sales, etc (Kukar-Kinney and Close, 2010; Huang et al., 2018).
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Tversky, 1979) suggests that individuals are more sensitive to potential losses, such as a pay-

ment, than to equivalent gains. Mental accounting theory (Thaler, 1985) argues that consumers

treat payments as the opening of a new mental account, prompting a reassessment of their de-

cision under a different evaluative standard. In addition, a field experiment by Cao and Zhang

(2021) shows that consumers are more likely to engage in preference learning when decisions

are more likely to be realized, as in the case of checkout versus search. Together, these studies

offer conceptual support for the emergence of preference discovery at the checkout page.

The model-free evidence from the data also supports our interpretation. We observe that

many consumers engage in the checkout process multiple times. On average, products brought

to the checkout page become cheaper as the number of checkout attempts increases, while we

observe no similar trend for other product attributes after controlling for their correlation with

price. Moreover, when dividing the search process into intervals based on checkout behaviors,

the price divergence between searched and purchased products decreases with the number of

intervals experienced. However, this trend is not significant between clicks into product pages.

These findings suggest that preference changes, considered mainly in price sensitivity, are more

evident before and after checkout behaviors than during the search process between checkouts.

Based on the above findings, we propose a novel sequential search model that jointly cap-

tures consumer search and (price) preference discovery. This model differs from the classical

search model in two key aspects. First, we assume that consumers base their search decisions

on beliefs but not knowledge about their true price sensitivity. Second, instead of proceeding

directly to payment after selecting a product, consumers are directed to a checkout page, where

they undergo a cognitive shift that prompts reflection on their perceived price sensitivity and

leads to an update in their beliefs. This setting introduces the possibility that decisions optimal

under prior beliefs may become suboptimal after belief updates, prompting regret and check-

out abandonment.2 The model distinguishes between information acquisition and preference

discovery by treating them as alternating stages in the search process. During the information

acquisition stage, belief-based price sensitivity is held constant, while preference discovery oc-

curs exclusively at the checkout stage. As checkouts introduce no new product information,

2We assume myopic learning, meaning consumers do not anticipate belief updating or search cost changes at the
checkout stage, consistent with existing theoretical and experimental research.
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whether the consumer abandons the checkout serves to identify and quantify changes in per-

ceived price sensitivity, thereby capturing the process of preference discovery.

Our study shows that, on average, consumers become increasingly sensitive to price as the

search process progresses. Before their first checkout, consumers underestimate their price sen-

sitivity by 29.8% compared to their true preferences. After two checkouts, this underestimation

decreases to 19%. By the time of purchase, consumers’ perceived price sensitivity is more than

10.5% higher than when they initially begin searching.

Compared to the classic sequential search model, we find that incorporating preference dis-

covery raises the estimated own-price elasticity of purchase by approximately 1.5 times, indicat-

ing that the classic model significantly underestimates the intensity of market price competition.

This arises because the classic model overlooks consumers’ purchase attempts before the final

transaction and portrays them as more patient than they actually are. In reality, consumers fre-

quently attempt to purchase during the search process, but also often abandon their checkout

decisions. Although checkout abandonment may lead consumers to view additional high-priced

options, they tend to select lower-priced products when making a final purchase. As a result,

the effectiveness of market strategies that reduce search costs may be overestimated by as much

as 30%. In addition, we evaluate the impact of the “one-click purchase” mechanism, which

encourages consumers to buy quickly and thereby reduces checkout abandonment. However,

it also limits consumers’ ability to reflect before making a final decision, potentially leading to

more impulsive purchases. Our results show that while one-click purchase reduces market exit,

retains more consumers, and increases total revenue, it lowers the surplus of those who would

have purchased even without the mechanism. Specifically, when the adoption rate of one-click

purchase exceeds 50%, the average utility per buyer declines by 5% to 9%.

Our model poses substantial challenges to existing estimation approaches in the empiri-

cal search literature. The structural complexity introduced by a multi-round sequential search

process, linked by repeated checkouts, renders traditional numerical methods for standard se-

quential search models largely inapplicable. To address this, we first adopt the result from

Zhang (2025) to recast the standard sequential search process into a fully equivalent ranking

model with a more tractable probability structure. Then we evaluate the probability that the
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change in rankings before and after checkout conforms to a Bayesian updating process. This

approach ultimately allows us to estimate the full model using simulated maximum likelihood

while maintaining a manageable computational burden.

This paper relates to three strands of literature. First, it contributes to the empirical study

of preference discovery. In a seminal work, Plott (1996) proposes the Discovered Preference

Hypothesis, arguing that individuals initially exhibit myopic decision-making when facing un-

familiar tasks and gradually form stable preferences through repeated choices. This hypothesis

has inspired a large body of theoretical (e.g., Cooke, 2017; Cerreia-Vioglio et al., 2023) and

experimental research (e.g., Plott and Zeiler, 2005; Delaney et al., 2020; Cao and Zhang, 2021).

However, empirical evidence has been relatively scarce until recent years. Narita (2018) uses

data from the New York City school enrollment system to show that families revise their ac-

ceptance choices as they learn more about schools. Similarly, Grenet et al. (2022) find in the

context of German university admissions that students are more likely to accept early offers

than later ones. These studies focus on final decisions made in an exogenously structured, fully

informed environment, shaped by the institutional features of the application process. In con-

trast, our study examines a more realistic setting in which preference discovery not only affects

final choices but also shapes the search process and the formation of consideration sets.

Second, our paper is related to the research on consumer learning. This strand of litera-

ture assumes consumers’ incomplete knowledge about products and assuming that choices are

based on perceived rather than actual utilities, while utility beliefs can be updated from learn-

ing. Among this literature, Erdem and Keane (1996) establish a general model exploring how

consumers form beliefs about brands with advertisements and repeat purchases. Subsequent

studies extended this model to further delve into consumer learning about individual brands or

products (e.g., Ackerberg, 2003; Crawford and Shum, 2005; Ching, 2010). Though some pa-

pers examine spillover learning within a brand across products or categories (e.g., Erdem, 1998;

Balachander and Ghose, 2003), and others explored cross-brand learning (e.g., Szymanowski

and Gijsbrechts, 2012), the learning impacts are usually limited to the perceived utility of a

specific product or a group of related products. In contrast, our study examines preference

discovery, a process that impacts perceived utilities of all alternatives simultaneously.
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Last but not least, our paper is closely related to learning in consumer search. Many empir-

ical search studies (e.g., Kim et al., 2010; Chen and Yao, 2017; Ursu, 2018; Jolivet and Turon,

2019) assume consumers only obtaining product information in search. Some theoretical papers

investigate optimal search when considering further learning (e.g., Branco et al., 2012; Chick

and Frazier, 2012). Recent empirical research incorporates both consumer search and learning

about different aspects of the market, such as the distribution of product-level uncertainty (e.g.,

Koulayev, 2014; De Los Santos et al., 2017), the distribution of product attributes (e.g., Jindal

and Aribarg, 2021; Gardete and Hunter, 2024; Wu et al., 2024), and beliefs over consumer-

product-specific match values (e.g., Ursu et al., 2020). These papers assume learning occurs

with consumer search to derive optimal responses or strategies by identifying prior beliefs with

additional information and estimating the learning process. Of the many papers, Dzyabura and

Hauser (2019) is the only one that considers consumers learning about their preferences. With

a theoretical framework that allows perceived preference change, they show the optimal rec-

ommendation system should encourage learning by suggesting products with diverse attributes

at the early part of the search process. Our paper follows the idea of this paper, providing a

tractable structural framework, and estimating the model with observational data.

For the remainder of this paper, we introduce our context, data, and reduced-form evidence

in Section 2. In Section 3, we present our model. Section 4 explains our estimation strategy.

Section 5 contains our main empirical results. We summarize and conclude in Section 6.

2 Data

2.1 Data Source and Platform Design

Our data originates from a prominent online marketplace in a central Asian country. The click-

stream dataset is anonymized, collected by the Open CDP project, and publicly shared on Kag-

gle.com3. It comprises chronological data of all consumers’ clicks spanning seven months,

from October 2019 to April 2020. The clicks are categorized into three types:

1. View: A consumer clicks on a product on the list page and approaches the product page.

3The clickstream dataset is available at https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-
from-multi-category-store.
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2. Checkout: A consumer clicks on ‘purchase’ on one of the sellers on the product page and

approaches the checkout page4.

3. Purchase: A consumer clicks on ‘purchase’ on the product page and confirms payment.

Each click is recorded with a user ID for a consumer account, an SKU ID for the product

page, a timestamp for the slot when the click happens, and the product price related to the click.

Our analysis focuses on cellphone sales within this marketplace. Because a cellphone can only

communicate with a phone number, consumers usually seek to buy an optimal choice but not

multiple complementary alternatives. This allows consumers to apply a consistent comparison

standard across different products. Moreover, cellphones are durable and relatively expensive,

prompting consumers to invest time and effort in knowing both product information and their

preferences better before purchasing rather than choosing randomly.

The marketplace interface encompasses three primary web pages, corresponding to three

stages of the consumers’ shopping process. Firstly, consumers browse through a list page dis-

playing product alternatives, each accompanied by an outline picture and a product name with

essential information. For example, ‘Smartphone Samsung Galaxy S10 4GB/128GB black’

provides information about the brand (Samsung), RAM (4GB), storage (128GB), and color.

Subsequently, consumers can access product pages that provide more comprehensive informa-

tion, including sellers, delivery periods and fees, reviews on products and sellers, and more

detailed specifications. We collect the information in product names as the list-page attributes,

together with part of the product-page information, as our attribute dataset of all 1708 cellphone

product pages on the platform. We merge the attribute dataset with the click-stream dataset.

Finally, the checkout page shows the payment interface, allowing consumers to finalize their

purchase decisions seamlessly. We show the illustration of the checkout page in Figure 1.

We highlight several key features of the marketplace’s checkout page that support our anal-

ysis. First, the checkout process is highly streamlined. Consumers choose between delivery and

in-store pickup, provide an address if they select delivery, and then select a payment method.

All relevant information displayed during checkout, such as the product name and total pay-

4The original dataset labeled the type of clicks as ‘cart’, while we found that the website does not have a virtual
shopping cart design within the data span.
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1. Delivery method

� Delivery ○ Pick Up

Input Your Address

Delivery - Free tomorrow Change

2. Payment method

u Spend Bonuses

� Payment Account 1

○ Payment Account 2

○ By installments

3 months 6 months 12 months 24 months

Payment per month: xxxxx (Monthly Amount) ¤

Purchase

Apple iPhone 11 128Gb
Slim Box Black

Seller: Seller name
Quantity: 1
Price: xxx xxx ¤
Delivery: Free

To pay: xxx xxx ¤

FIGURE 1 – Checkout Page Illustration
Notes: The figure shows the layout of a page with high similarity to the marketplace in our data.

ment amount (in lump-sum or installments), is already available on the list or product pages.

After reviewing the details, consumers confirm the purchase with a single click, and the entire

checkout process can typically take less than 30 seconds. Second, the platform does not use

a virtual shopping cart. Consumers can check out only one product at a time, so the check-

out decision is specific to a single product and unaffected by the other alternatives. Third, the

checkout page presents no new information. Delivery times and fees are shown on the prod-

uct page, and no additional attributes beyond those visible in the product name are introduced.

The process involves no further steps or verification procedures. The platform is operated by a

FinTech company and is the top-ranked online trading platform in the country, accounting for

70 percent of internet-based transactions. Around 60 percent of the national population holds

an active account. Although an account is required for purchase, this has become a widely ac-

cepted norm. Consumer accounts are linked to bank-issued debit or credit cards, resulting in

minimal friction at checkout and limited credit-related concerns. These features ensure a con-

sistent and straightforward checkout experience, minimizing external influences and ruling out

commonly cited factors for checkout abandonment.
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2.2 Descriptive Evidence

The clicks a consumer makes over a seven-month period constitute the observed sequence for

that consumer in the dataset. Our sample comprises 1,671,791 consumers, with summary statis-

tics shown in Table 1 5. Using this sample, we conduct a descriptive analysis to explore con-

sumers’ checkout behavior and their potential roles in preference discovery.

TABLE 1 – Summary Statistics of the Descriptive Sample

Consumer stats
No. of consumers 1,671,791
No. of consumers who do not checkout 1,074,018
No. of consumers who checkout but leave 218,971
No. of consumers who purchase 378,802

Steps stats
No. of steps 13,984,172
No. of steps with checkout abandonment 528,474
No. of steps with purchase 378,802
Checkout abandonment rate 58.93%

In our sample, the consumer checkout abandonment rate reaches approximately 59%, with

checkouts either not proceeding to payment or interrupted by consumers clicking on other prod-

ucts before completing payment. Previous research typically does not examine checkout aban-

donment independently but includes it within cart abandonment, for which survey-based esti-

mates indicate a rate of 70% (Baymard Institute, 2024) 6. Since our website does not include a

shopping cart feature, and most reasons mentioned in surveys are rarely applicable to our setup,

the persistently noticeable checkout abandonment rate requires a more plausible explanation.

We then turn to the preference change by comparing the list-page attributes of the checkout

products and viewed products. We collect our main results in Figures 2 and 3.

Figure 2 shows the relationship between the average attributes of checkout products and

the number of checkouts experienced. We focus on three continuous list-page attributes: price,

RAM, and storage. In the top left sub-figure, we observe that, without interference from addi-

tional views, the price of products brought to checkout decreases as the number of checkouts

increases (black line), a trend that remains robust across consumers with different total check-

out numbers (red, blue and emerald lines). This indicates that, on average, consumers tend to
5See Appendix A for detailed data cleaning process.
6Although survey data on checkout abandonment rates is limited, industry experts suggest an ideal rate should be
around 20% (Saleh and Shukairy, 2010).
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FIGURE 2 – Attributes of Checkout Products on Experienced Numbers of Checkouts
Notes: This graph shows the trends of average checkout product attributes as the times of checkout
grows. The top left subfigure uses all consumers in Table 1, while the rest three subfigures use con-
sumers who have viewed all checkout products before the first checkout.

take higher-priced products to checkout in earlier decisions, but after abandoning their check-

out, they tend to check out products at a lower average price. To ensure that consumer choices

at checkout are unaffected by those additional choices introduced by later views, we turn to

a subsample that includes only those consumers who view all checkout products before their

first checkout. We find a similar pattern in the top-right sub-figure. Our findings clearly show

that consumers become more price-sensitive in each subsequent checkout. Notably, this trend

does not appear in the residual plots for RAM and storage (bottom sub-figures), which suggests

that among list-page attributes, adjustments in price sensitivity serve as the primary driver of

preference discovery between checkouts.

Next, we turn to the deviation of product attributes to illustrate how search preference con-

verges to purchase preference. To show this, following Bronnenberg et al. (2016), we use

consumers who purchase and calculate the log deviation by taking the differences between the

log attributes of the viewed products and the purchased product.
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We plot the distribution of the log deviation by the decile position of the click in the search

process (Appendix Figures B.1 and B.2). We observe a convergence on all attributes throughout

the search process. The distribution of the log of relative prices is roughly symmetric around

0, showing large heterogeneity in consumers’ search process. We use the absolute value of the

log deviation to measure the extent of search deviation from the purchased product and regress

it on the view and checkout dummies. We show the coefficient plots in Figure 3.
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FIGURE 3 – View Step and Checkout Fixed Effects on Absolute Log Deviations
Notes: The regressions control dummies for the first 30 view steps.

We use the absolute log deviation of the first viewed product as the baseline. Our results

show that as consumers experience more checkouts, they tend to view products with less devi-

ated attributes. Specifically, the fixed effects of checkout steps on the absolute log deviations

exhibit a downward trend, while the effects of view steps move in the opposite direction and

are less pronounced (Subfigure 1). To account for potential preference heterogeneity across

consumers with different total checkout counts, we replicate the analysis using only sequences

with exactly three and four checkouts (Subfigures 2 and 3). In both cases, the convergence in

product attributes is almost entirely driven by the checkout fixed effects, whereas the view fixed

effects remain practically insignificant. Similar patterns hold across other list-page attributes,

as shown in Appendix Table B.1.7

We observe in the data, consistent with Bronnenberg et al. (2016), that the attributes of

viewed products exhibit a stable convergence toward the attributes of the purchased products,

with no systematic drifts or sudden changes. The original study thus concludes that preference

learning does not play a substantial role during search. However, our further analysis suggests

7These findings are robust to reversing the order of checkouts and inspection steps.
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that such stability may mask the presence of actual preference discovery: attribute shifts are

reflected in consumers’ checkout choices, and the convergence path of inspected products is

closely linked to checkout behavior. We insist that preference discovery does not occur uni-

formly throughout the search process but is instead concentrated at checkouts. Because the

timing of checkout varies across search sequences, its aggregate effects are difficult to identify

from the attribute patterns of viewed products. Our findings highlight the critical role of check-

outs in preference discovery, suggesting that this process can be viewed as a single-dimensional

one, in which consumers gradually learn their willingness to pay through repeated checkouts.

This mechanism provides theoretical support for modeling preference discovery as a discrete

updating process on perceived price sensitivity, which primarily occurs at the checkout stage.

3 Model

In this section, we propose a structural model that integrates preference discovery into sequen-

tial search.8 Our model differs from the classic Weitzman-style sequential search model (Weitz-

man, 1979) in two key respects. First, consumers hold a belief about their price sensitivity rather

than knowing it with certainty. Second, selection is provisional: after selecting a product, the

consumer proceeds to the corresponding checkout page but not immediate payment, receives a

signal about her true price sensitivity, updates her belief, and decides whether to purchase.

Hence, the model describes an alternating process of information acquisition and preference

discovery. Information acquisition follows a standard sequential search process, where each

selection leads to checkout. Preference discovery takes place at the checkout stage, where the

consumer updates her belief and reconsiders her search decision based on the revised perception

of price sensitivity. A purchase is observed if the consumer selects the same product again

without further inspection, given the posterior belief.

3.1 The Information Acquisition Process

Consider a consumer i who intends to purchase a cellphone on our platform. Her shopping pro-

cess begins on the cellphone list page, where she observes all available products, forming her

8We adopt a sequential search model because preference discovery is identified through changes in consumer de-
cisions, which standard discrete-choice or simultaneous search models cannot capture. These models typically
assume that search behavior is determined by perceived preference a priori.
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choice setMi with size |Mi|. For each product j ∈Mi, the list page displays partial informa-

tion—such as price, brand, RAM, and storage—referred to as list-page attributes. We assume

these attributes are freely accessible to the consumer upon opening the list page. Additional

attributes that are not fully displayed on the list page but appear on each product’s detail page

are referred to as product-page attributes.

Let x j denote the non-price attributes shown on the list page, and let pi j represent the dis-

played price of product j, which may vary across consumers due to differences in purchasing

dates. We assume that consumer i does not have full knowledge of her true price sensitivity and

introduce the concept of perceived price sensitivity, which governs how she evaluates prices

in her decision-making. This perceived sensitivity varies across consumers and may evolve

throughout the search process. When consumer i enters the market, her perceived price sensi-

tivity is βi1; after r−1 updates, it becomes βir.

Define perceived utility as the utility that consumer i expects to obtain from purchasing

product j under full information, given the perceived price sensitivity βir. The utility function

is specified as a linear combination of list-page attributes, expressed as:

ui jr = γ
⊤x j +βir pi j︸ ︷︷ ︸

vi jr

+εi j, εi j ∼N (0,σ2
ε ), j ∈Mi

Here, vi jr denotes consumer i’s valuation of the list-page attributes under the perceived price

sensitivity βir. The term εi j represents a one-dimensional index capturing consumer i’s unob-

served idiosyncratic evaluation of the product-page attributes. Following prior empirical studies

(e.g., Kim et al., 2010; Chen and Yao, 2017; Ursu, 2018), we model εi j as a consumer-product-

specific match value drawn from an i.i.d. normal distribution with mean zero and standard

deviation σε . This distribution is assumed to be known to consumer i.

Given βir, the only component of ui jr that is unknown to consumer i is εi j. To resolve this

uncertainty and determine the perceived utility, consumer i must click into the product page of

j to obtain its product-page information. This action is referred to as the consumer’s inspection

of product j. Through inspection, εi j is fully revealed, and the perceived utility ui jr becomes

known. Importantly, a product cannot be purchased until ui jr is determined.
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Inspection is modeled as a step-by-step sequential process, where the consumer must incur

a search cost to obtain the full information associated with each product. This cost includes

both objective factors (such as time and physical effort) and subjective ones (such as cognitive

effort, attentional demands, patience, and the emotional stress in decision-making). We assume

that consumer i knows the search cost prior to inspection, but this cost is unobservable to the

researcher. Following Moraga-González et al. (2023) and Chung et al. (2024), we model the

search cost as heterogeneous across consumer-product pairs and allow it to vary randomly when

perceived price sensitivity is updated (the rationale is discussed in Section 3.3). These random

search costs are assumed to follow an i.i.d. log-normal distribution.

lnci jr ∼N (c̄,σ2
c ).

We assume that inspections are 1) exhaustive, inspection leaves no hidden information related

to εi j; and 2) permanent, consumer i can recall the value of εi j without any additional cost.

Consumer i can stop inspecting additional products after any inspection. This stopping

decision leads to one of two outcomes: either leaving the market completely, or proceeding

to the checkout page with a selected product, referred to as a checkout. In the former case,

the consumer selects the outside option ( j = 0) and does not enter the checkout page. In the

latter case, she initiates a checkout process. Checking out incurs minimal cost and does not

provide additional information, implying that the consumer will only proceed to checkout if she

genuinely intends to purchase the product.

We segment the entire search process into multiple stages, each bounded by a checkout.

Each stage consists of a sequence of consecutive inspections followed by a checkout, and is

defined as an inspection round. All actions in inspection round r are based on a fixed perceived

price sensitivity βir and search costs ci jr. In each inspection round, the consumer may inspect

any number of previously uninspected products or choose not to inspect at all. At checkout, she

may select from all products inspected in the current or any previous inspection round. 9

9In the empirical analysis, we focus only on consumers who inspect at least one product in inspection round 1, as
our data does not include those who browse the list page without clicking on any products.
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3.2 Optimal Search within Inspection Rounds

Within an inspection round, the consumer follows a standard sequential search process. Assum-

ing that εi j is independently and identically distributed across products, the optimal strategy is

governed by the Optimal Search Rules of Weitzman (1979). To introduce these rules, we first

define the value of an inspection. Suppose the consumer i has access to a fallback option that

provides utility v̄. Then, the expected benefit from inspecting another product j is given by:

Hi jr(v̄) =
∫

εi j>v̄−vi jr

(εi j− (v̄− vi jr)) dF(εi j) = (1−F(v̄)) ·E(εi j + vi jr− v̄ | εi j + vi jr > v̄)

with F(·) denoting the pdf of εi j. Hence, the consumer i inspects product j only if the expected

gain Hi jr(v̄) exceeds the search cost ci jr. We assume consumer i is risk-neutral, meaning she is

indifferent between resolving and reserving a product’s uncertainty when expected benefits are

identical. The reservation value zi jr is defined as the value of v̄ that equates the expected gain

and search cost:

ci jr = Hi jr(zi jr)

Following Appendix 1 in Kim et al. (2010), zi jr has a linear specification:

zi jr = vi jr +σε ·m
(

ci jr

σε

)
= vi jr +σε ·mε

(
ci jr

)
,

where m−1 (η) = (1−Φ(η))

[
φ(η)

1−Φ(η)
−η

]
.

where φ(.) and Φ(.) the pdf and cdf of the Gaussian distribution.10 The reservation value deter-

mines whether consumer i inspects a product given an alternative value, and can be interpreted

as the equivalent value of an inspection. The function mε(ci jr) is a strictly decreasing bijection

that maps the search cost to the value of an option with unresolved εi j, capturing the informa-

tional rent due to product-level uncertainty. This value depends only on ci jr and the distribution

of εi j, both of which are assumed to be known to the consumer. Therefore, given βir and ci jr,

consumer i knows the reservation values of all products at the beginning of each inspection

10For the detailed derivation of zi jr, see Appendix C.
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round, referred to as the perceived reservation values in inspection round r.

Suppose consumer i undergoes R inspection rounds and inspects a total of JR products.

Following the inspection order, we index the rounds from 1 to R and the inspected products

from 1 to JR. Uninspected products are indexed by k ∈ {JR + 1,JR + 2, . . . , |Mi|}. In each

round r, the checkout product is denoted by hr, and the last inspected product by Jr. Given the

perceived utilities and reservation values in round r, we apply the result of Weitzman (1979) to

characterize consumer i’s optimal search decisions using the following rules.11

1. Optimal Ranking: Inspect products in decreasing order of perceived reservation values:

zi,Jr−1+1,r ≥ zi,Jr−1+2,r ≥ ...≥ zi,Jr,r > max
k>Jr
{zi,k,r}.

2. Optimal Continuing: Continue searching when the maximum perceived reservation value

exceeds the perceived utility of any inspected product:

zi jr ≥
j−1

max
ℓ=0
{uiℓr}, ∀ j ∈ {Jr−1 +1,Jr−1 +2, · · · ,Jr}.

3. Optimal Stopping: Stop searching when the maximum perceived utility of inspected prod-

ucts exceeds the perceived reservation value of any uninspected product:

max
j≤Jr
{ui jr} ≥ max

k≥Jr+1
{zikr}.

4. Optimal Selecting (Checkout): When search stops, check out the product with the maxi-

mum perceived utility among inspected products.

ui,hr,r ≥
Jrmax

j=1, j ̸=hr
{ui jr}.

11These optimal search rules apply when search in inspection round r is independent of other inspection rounds, that
is, when β ir and ci jr are held as given.
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3.3 Preference Discovery between Inspection Rounds

This subsection explains how the perceived price sensitivity βir is determined in each inspec-

tion round. We assume that, in round r, consumer i holds a prior belief about their true price

sensitivity, modeled as a normally-distributed belief N (βir,ω
2
r ).

We assume that consumer i bases her search decisions on the mean of her prior belief βir un-

der two key premises. First, the consumer is risk-neutral with respect to information uncertainty

(consistent with our reservation value setup), so the strength of her belief does not affect her

decisions. Second, consumers are myopic, meaning they do not anticipate preference discovery

or search cost changes across inspection rounds. Although the second assumption may appear

strong, we offer several justifications. First, our reduced-form analysis indicates that preference

discovery occurs primarily around checkouts. If consumers were forward-looking, it would

be unclear why belief updating would be triggered upon entering the checkout page. Second,

forward-looking consumers should attempt to identify their preferences as early as possible

(Dzyabura and Hauser, 2019). If preference discovery requires entering checkout, consumers

would be expected to initiate checkouts frequently in the early stages of search. However, data

shows that checkout events tend to occur more frequently in the later part of the search pro-

cess. Third, theoretically, preference discovery is triggered by the anticipated consequences

of decision-making (Cao and Zhang, 2021). Since the consequences of a purchase are neither

realized nor observable in inspections, it is less likely to assume forward-looking learning when

purchase intentions are not explicitly involved.12

Consumer i’s initial prior mean is determined by:

βi1 ∼N (βi +δ ,σ2
0 ), where βi ∼N (β̄ ,σ2

β̄
),

Here, βi represents consumer i’s true price sensitivity, β̄ is the overall mean of consumers’ true

price sensitivity in the sample, δ denotes the population-level deviation between consumers’

12From a modeling perspective, solving the optimal solution of a forward-looking process that jointly incorporates
information acquisition, preference discovery, and purchase decisions would be highly complex, subject to the
curse of dimensionality, difficult to identify, and unlikely to be supported by available data. To our knowledge,
we are aware of no simplification making this problem tractable, nor do we expect consumers to solve such a
cognitively demanding optimization in their online shopping.
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prior mean and their true price sensitivity, and σ2
0 is the variance of the prior mean, conditional

on the true price sensitivity and population deviation. In this setup, we assume that the per-

ception deviation is consistent across consumers, while each consumer has a unique true price

sensitivity and starts their search from a different position relative to the deviated preference.

The parameters δ and σ0 jointly capture the extent of preference discovery: when both equal

zero, no preference discovery occurs; when δ is 0 but σ0 is positive, the average perceived price

sensitivity remains stable, yet discovery still takes place at the individual level.

Each time consumer i enters the checkout page, she receives a signal about her true price

sensitivity, drawn from a normal distribution with mean βi.

β
s
i ∼N (βi,σ

2
s )

Here, σ2
s denotes the variance of the perceived signal, which is assumed to be known to con-

sumers. It reflects the precision with which consumer i perceives her true price sensitivity—a

smaller σ2
s implies a more accurate signal. Following Bayesian updating, when consumer i

reaches the checkout page, her belief is updated from a prior belief N (βir,ω
2
r ) to a posterior

N (βi,r+1,ω
2
r+1), with the updated parameters given by:

βi,r+1 = βi,r +
τ2

r
1+ τ2

r
(β s

i −βi,r),

ω
2
r+1 = ω

2
r ·

1
1+ τ2

r
= ω

2
1 ·

1
1+ τ2

1 · (r−1)
,

τr =
ωr

σs
=

τ1√
1+ τ2

1 · (r−1)
.

Here, τr is the ratio of the prior belief’s standard deviation to that of the signal, reflecting how

much consumers trust the signal over their prior beliefs. It is also an indicator the consumer’s

learning speed: as τr approaches infinity, consumers fully trust the signal received; when τr = 0,

no learning occurs. For any τ1 > 0, the consumer’s perceived price sensitivity converges to her

true price sensitivity βi with the variance approaches zero. At the sample level, perceived price

sensitivity converges to β̄ , and the variance to σ2
β

.

We conclude by explaining why consumer i is assumed to redraw her search costs at the

19



checkout stage. This is because these costs include subjective emotional components, which

often become unstable upon entering checkout. For instance, the consumer may grow more

concerned about missing uninspected products or begin to doubt whether she is truly ready to

make a purchase. In such cases, search costs may fluctuate due to behavioral shocks unrelated

to product information. We model these shocks as stochastic components within ci jr, allowing

us to distinguish abandonment driven by preference discovery from that caused by exogenous

randomness. In contrast, we assume the utility term revealed during inspection (i.e., εi j) remains

constant throughout the search process, since it depends on product-page information that does

not change and is not explicitly presented on the checkout page.

3.4 The Full Model

Start
with βi1

Inspection Round 1
obtain J1,h1

Yes
h1 = 0? Leave the Market

No: set r← 1

Preference Discovery
at the checkout page

βir → βi,r+1

Inspection Round r + 1
obtain Jr+1,hr+1

Jr+1 = Jr?
hr+1 = hr?

Yes Purchase hr

No

hr+1 = 0? Yes
Leave the Market

No

r← r+1

FIGURE 4 – Search Process with Preference Discovery

We present the full model in Figure 4. After entering the market, consumer i begins her first

inspection round and makes decisions based on her perceived price sensitivity βi1. When she

decides to stop inspecting, she either exits the market (h1 = 0) or selects an inspected product

to proceed to the checkout stage (h1 ∈ {1,2, . . . ,J1}). In the latter case, she receives a signal on

the checkout page, updates her perceived price sensitivity to βi2, and redraws search costs ci j2
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for all uninspected products. She then enters the next round and reconsiders her prior decisions.

If she inspects other products or changes her checkout selection, she exits the current checkout

page and clicks on another product. This behavior is interpreted as checkout abandonment.

The entire search process takes the form of an iterative cycle, in which information acqui-

sition within each inspection round alternates with preference discovery between inspection

rounds. This process continues until the consumer no longer enters a new checkout page in an

inspection round. This occurs in one of two actions:

1. Leave (hR = 0): The consumer exits the market in inspection round R without entering

the checkout page. As a result, no further preference discovery occurs, and the search

terminates without a purchase.

2. Purchase (JR = JR−1 and hR = hR−1): After preference discovery, the consumer decides

to purchase the product checked out in round R−1. This implies that in round R: (1) she

does not inspect any uninspected products; (2) she confirms the checkout choice made in

round R−1. These two conditions jointly ensure that she remains on the checkout page of

product hR−1 and completes the purchase without receiving any new preference signals.

The model concludes when either of these two conditions is met.

The outside option is the last component to be specified. We assume a round-dependent

outside option value, which takes the following functional form:

uoutside
ir =


−∞ if r = 1;

µoutside
0 + log(1+ r ·ξ outside)+ εoutside

i if r > 1.

Consumers are assumed to know the outside option value at the beginning of each inspec-

tion round. We further assume they are myopic with respect to its evolution across rounds, as

prolonging search in expectation of a better outside option is not economically rational. The

specification of the outside option is motivated by two key observations. First, 77% of cus-

tomers in our data never complete checkout. Their search intent is unclear, and many may be

casual browsers or window-shoppers. Including such consumers in estimation could confound

our results. Since they never reach the checkout page, they are also irrelevant to our analysis of
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preference discovery around checkout. We therefore exclude them from estimation and set the

outside option value to negative infinity before the first checkout, ensuring that all sampled con-

sumers complete at least one checkout. Second, we assume the outside option value increases

with the number of inspection rounds. Beyond the high exit rate in the first round, over 25%

of consumers exit in each subsequent round. These exits are unlikely to be driven by product

information or perceived price sensitivity alone, suggesting a nontrivial role for external factors.

For example, 60% of U.S. consumers compare prices across platforms (van Gelder, 2023), and

others may face time constraints (Greminger, 2024) or search fatigue (Ursu et al., 2023). Al-

though these factors are not directly observed in our data, their influence of prompting leaving

likely increases over time. To capture this, we model the outside option value as increasing

across inspection rounds to better align with the observed exit behavior.

Our model provides flexible explanations for consumer behavior on the checkout page. Af-

ter abandoning checkout, consumers may proceed with a previously inspected product, inspect

a new one, or exit the market. For the latter two cases, our model considers alternative motiva-

tions. Consumers may inspect further due to changes in subjective search costs or exit due to a

higher outside option value. However, if a consumer switches to another previously inspected

product, we assume checkout abandonment is entirely driven by preference discovery, as she

already has information on both products at the time of checkout and abandonment.

4 Estimation

This section presents our estimation strategy. We implement a simulated maximum likelihood

approach, a method commonly used in the literature for estimating sequential search models.

4.1 Likelihood Contributions

We begin by constructing the likelihood function of the model. Specifically, we first derive the

conditional likelihood of sequential search within each inspection round, given βir, ci jr, and

uoutside
ir , and then incorporate the Bayesian updating of perceived preferences across rounds to

establish the unconditional likelihood.

The conditional likelihood is defined as the joint probability that the observed sequence

of inspections and checkout decisions is subject to the optimal search rules described in Sec-
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tion 3.2. However, directly computing this probability leads to challenges in computation. To

address this, we follow Proposition 1 in Zhang (2025) and recast the within-round sequential

search as an equivalent partial ranking over action values. We have the following proposition:

Proposition 1. Define:

yir =

 min{ui,hr,r,zi,Jr,r}, if r = 1;

min{ui,hr,r,zi,Jr,r} · I(Jr > Jr−1)+ui,hr,r · I(Jr = Jr−1), if r > 1.

Denote J0 = 0 for symbolic simplification. Weitzman’s Optimal Search Rules hold if and only if

the following conditions are fulfilled:

1. Distribution Condition: ui,hr,r ≤ zi,Jr,r if hr < Jr and Jr > Jr−1 for all r ;

2. Rank Condition: zi,Jr−1+1,r ≥ zi,Jr−1+2,r ≥ ...≥ zi,Jr,r for all r ;

3. Inspection Choice Condition: zikr ≤ yir for all k > Jr;

4. Purchase Choice Condition: ui jr ≤ yir for all j ≤ Jr and j ̸= hr.

Zhang (2025) demonstrates that any optimal sequential search process satisfying the Weitz-

man assumptions can be recast as a single-stage partial ranking model, whose features are fully

characterized by the conditions stated in Proposition 1 and yield the same probability as the

original sequential search process. Based on this result, we express the conditional joint proba-

bility of the search decisions within inspection round r as follows:

Prob(Decisions in round r | ui,hr,r,Θ1,βir, p⃗i, x⃗)

= Pr(zi,Jr,r)≥ ui,hr,r | ui,hr,r,Θ1,βir, pi,Jr ,xi,Jr)
I(Jr>hr)·I(Jr>Jr−1)︸ ︷︷ ︸

Distribution Condition

·
Jr−1

∏
j=Jr−1+1

Pr(zi jr ≥ zi, j+1,r | zi, j+1,r,βir,Θ1, pi j,x j)︸ ︷︷ ︸
Rank Condition

·
Jr

∏
j=1, j ̸=hr

Pr(ui jr ≤ yir | yir,βir,Θ1, pi j,x j)︸ ︷︷ ︸
Purchase Choice Condition

·
|Mi|

∏
k=Jr+1

Pr(zikr ≤ yir | yir,βir,Θ1, pik,xk)︸ ︷︷ ︸
Inspection Choice Condition
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Here Θ1 = {µoutside,ξ outside,γ, c̄,σc,σε} represent the parameters that determine consumers’

search and checkout decisions in an inspection round apart from the perceived price sensitivity.

In the above expression, inspection and purchase decisions within each inspection round

are transformed into direct or indirect ordinal relationships between perceived utilities or reser-

vation values and ui,hr,r. Since the checkout product may differ across rounds, we exclude

the perceived utilities of products checked out in other rounds from the ordering conditions in

each round. Due to the conditional independence inherent in partial ranking structures, this

exclusion does not affect the relative ordering among the remaining values. Define the set of

perceived price sensitivity and match values that determines checkout products’ perceived util-

ities in all rounds by Ψi = {εi,h1, · · ·εi,hR,βi1, · · · ,βiR}, the likelihood of consumer i’s inspection

and checkout decisions within all inspection rounds is given by:

Li,search =
R

∏
r=1

Pr(mε(ci,Jr,r)≥ ui,hr,r− vi,Jr,r |Ψi,Θ1, p⃗i, x⃗)I(Jr>hr)·I(Jr>Jr−1)

·
R

∏
r=1

Jr−1

∏
j=Jr−1+1

Pr(mε(ci jr)≥ zi, j+1,r− vi jr | zi, j+1,r,Ψi,Θ1, p⃗i, x⃗)

·
JR

∏
j=1, j/∈{h1,h2,··· ,hR}

Pr(εi j ≤ min
r∈{t j,t j+1,···R}

yir− vi jr | yir,Ψi,Θ1, p⃗i, x⃗)

·
R

∏
r=1

|Mi|

∏
k=Jr+1

Pr(mε(ci jr)≤ yir− vikr | yir,Ψi,Θ1, p⃗i, x⃗)

where t j indicates the inspection round in which product j is inspected.

Consumer i’s checkout decisions reveal the relative perceived utilities of the checked-out

products and the associated shifts in perceived price sensitivity. A product may be preferred

to another under the prior but inferior under the posterior. The observed checkout sequence

requires that each product checked out must exhibit higher perceived utility than all previously

inspected and checked-out alternatives. Define Ii as the family of Ψi that ensures ui,hr,r ≥

ui,hr′ ,r for all r and r′ ∈ 1,2, . . . , thr , the probability that consumer i sequentially checks out

{h1,h2, . . . ,hR} across inspection rounds {1,2, . . . ,R} is given by:

Li,discovery = Pr(Ψi ∈ Ii | pi,h1, · · · , pi,hR,xh1, · · · ,xhR,Θ2)
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where Θ2 = {β̄ ,δ ,τ1,σβ̄
,σs} are the determinant parameters for preference discovery. The

overall parameter set to be determined is Γ = {µoutside,ξ outside,γ, c̄,σc,σε , β̄ ,δ ,τ1,σβ̄
,σs}.

The overall likelihood of consumer i’s search process is therefore:

Li(Γ; p⃗i j, x⃗ j) = Li,search ·Li,discovery

It is important to note that Li,discovery may be subject to a zero-probability issue. To ensure

that Li,discovery > 0, it may be necessary to impose additional restrictions on the domain of βir.

For instance, consider the case where consumer i undergoes two inspection rounds, 1 and 2,

and checks out two distinct products, h1 and h2, both inspected in round 1. In this scenario, the

perceived utilities of the checkout products must satisfy the following conditions:

ui,h1,1 ≥ ui,h2,1⇒ εih2− εih1 ≤ xh1γ + pi1βi1− xh2γ− pi2βi1

ui,h2,2 ≥ ui,h1,2⇒ εih2− εih1 ≥ xh1γ + pi1βi2− xh2γ− pi2βi2

The inequality conditions above hold only if (βi1−βi2)(pih1 − pih2) > 0. The intuition is that,

if a consumer, knowing two products, abandons her checkout with the more expensive one and

turns to the cheaper, she must be more price sensitive after preference discovery at the checkout.

These domain constraints are common in our implementation and impose nontrivial limita-

tions on the model. Our assumption that preference discovery occurs only in perceived price

sensitivity across inspection rounds contributes to the model’s traceability. However, the setup

of a unique source of variation suffers from the curse of dimensionality. In an extreme case

where consumer i undergoes R inspection rounds and checks out R distinct products all in-

spected in the first round, the implied sequence generates at least (R− 1) ·R inequality con-

straints on perceived utilities. By contrast, Ψi contains only R match values (εi,hr) and R price

sensitivity parameters (βir), yielding just 2 ·R degrees of freedom. As R increases, the number

of constraints exceeds the dimensionality of Ψi, resulting in excessive restrictions. Neverthe-

less, for R ≤ 3, all relevant constraints can be exhaustively enumerated, covering over 99.3%

of inspections and 97.6% of checkouts in the data. Appendix D lists the full set of inequality

constraints for a consumer’s first three checkout decisions and details the implementation of

Li,discovery in each case.
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Inspections do not directly constrain the range of perceived price sensitivity. Although

abandoning a more expensive checkout to inspect a cheaper product may suggest increased price

sensitivity, such behavior may also reflect a lower search cost drawn in the subsequent round.

This highlights the importance of allowing search costs to vary across rounds. If perceived

utility and reservation values depended solely on price, all products inspected in a new round

would need to be uniformly more expensive or cheaper than the abandoned checkout. This

pattern is inconsistent with the data, indicating the need for an additional source of variation to

allow products in different price levels to be inspected following a checkout abandonment.

4.2 Identification

Our model’s identification strategy consists of two parts. We first identify search parameters.

The round-specific price sensitivity is identified with choices in each inspection round, while

search cost and parameters for other list-page attributes are identified with inspection and check-

out decisions throughout the search process. Then, parameters for the normal Bayesian prefer-

ence discovery are identified through the variation of price sensitivity across rounds.

Prior research on sequential search often employs illustrative explanations to clarify how

usual moment conditions in the data are related to model parameters. We adopt a similar in-

formal approach in the main text to maintain accessibility. For readers seeking a more rigor-

ous treatment, Appendix F presents a formal identification analysis, addressing both sequential

search and preference discovery. While studies such as Morozov et al. (2021) and Ursu et al.

(2023) develop identification arguments based on subsets of decisions, our formal approach

leverages the full set of decision-making in consumers’ within-round search processes. We be-

lieve the informal discussion in the main text offers sufficient clarity for applied purposes, while

the formal analysis provides theoretical insights into identification of a general class of models.

4.2.1 Search Parameters Identified Within Inspection Rounds

Consider the perceived utilities and reservation values of product j to consumer i:

zi jr =x jγ + pi jβir +mε

(
ci jr

)
ui jr =x jγ + pi jβir + εi j
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As pointed out by Ursu et al. (2023) and Chung et al. (2024), the identification of σε is

theoretically feasible but empirically fragile.13 To simplify estimation, we follow the existing

literature and normalize σε = 1.

It is important to emphasize that this assumption is not innocuous. Since the function

mε(ci jr) is not invariant to the scale of εi j, the assumed distribution of εi j has a substantial

impact on the estimation of search costs (Zhang, 2025). Therefore, all search cost estimates are

conditional on the assumed distribution of εi j, and the estimates should not be used directly for

monetization. Nevertheless, this assumption does not affect the scale of preference and prefer-

ence discovery parameters (see Chung et al., 2024; Greminger, 2024; Zhang, 2025). Hence, it

remains valid for studying the process of preference discovery.

Under the optimal search rules and Proposition 1, products inspected earlier are likely to

have higher perceived reservation values, while those with higher perceived utilities are more

likely to be checked out. Accordingly, the position of a product in the search sequence and its

checkout frequency help identify the attribute preference parameter γ and the average perceived

price sensitivity β̄ir. The heterogeneity in βir is identified through variation in consumers’ search

paths. For instance, consider two consumers who inspect the same set of products and purchase

the same one, but one begins with a more expensive option while the other starts with a cheaper

one. This pattern suggests that the former is more likely to exhibit lower price sensitivity.

The log mean of the search cost c̄ is identified by the length of inspection rounds. An

inspection round ends when the inspected product with the highest perceived utility exceeds the

perceived reservation values of uninspected products. The decreasing monotonicity of mε(c)

implies that lower search costs result in higher perceived reservation values, making consumers

more inclined to inspect unknown products and delay the checkout decision.

4.2.2 Discovery Parameters Identified Across Inspection Rounds

Now, consider the parameters for across inspection rounds. These include the parameters gov-

erning the preference discovery process and those explaining variation in consumer decision-

13This difficulty arises from the properties of mε(ci jr). The three parameters c̄, σc, and σε jointly determine its
distribution, including both the mean and the variance. Although σc can be identified from variation across rounds,
allowing for the theoretical identification of the remaining two parameters, the distributional shape of mε(ci jr) also
depends nonlinearly on these parameters. As a result, empirical identification is difficult to achieve. ? proposes a
Bayesian MCMC estimation approach that may help address this issue.

27



making independent of price disutility effects. Their identification relies on parameters identi-

fied within inspection rounds.

The standard deviation of search costs (σc) is identified by the frequency with which con-

sumers abandon the checkout product and continue searching. When σc = 0, search costs have

no variation, meaning all inspections in rounds r > 1 are driven purely by changes in price

sensitivity. A positive σc introduces variability in perceived reservation values, leading to in-

spections independent of preference discovery. As σc increases, consumers are more likely to

abandon checkout and extend their search process.

The mean true price sensitivity (β̄ ), the uniform deviation in perceived sensitivity (δ ), and

the initial convergence rate (τ1) are identified through the intercept, slope, and dispersion in

prior means. A larger |β̄ | indicates stronger price sensitivity throughout. The path of conver-

gence is shaped jointly by δ and τ1: both high |δ | and high τ1 generate notable inter-round

differences. However, while a high τ1 implies rapid adjustment after the first checkout, leaving

little change in later rounds, a low τ1 implies gradual convergence. Consequently, differences

between rounds 1 and 2 are more sensitive to τ1, whereas large |δ | preserves cross-round varia-

tion regardless of learning speed.

The standard deviation of true sensitivities (σβ ), the cross-consumer dispersion in prior

means (σ0), and the standard deviation in preference signals (σs) are identified by the intercept,

slope, and variation in prior variances. A larger σβ increases prior variance uniformly across

rounds, as preference learning does not eliminate true heterogeneity. In contrast, both a higher

σ0 and a lower σs steepen the decline in variance. A low σs indicates stronger belief updating

in round 2, while a high σ0 reflects more diffuse initial beliefs and thus slower convergence.

We show how the prior preferences that consumers act on in each inspection round in Figure

5. We can also see how the variation in preference discovery parameters δ ,τ,σ0 and σs influ-

ences the convergence curves of the preference belief. In principle, parameters in our preference

discovery model are identified with the sequence data of three or more inspection rounds.

4.3 Monte Carlo Simulation

We report the Monte Carlo simulation results in Appendix Table E.2, which validate the pro-

posed estimation method. A pseudo-sample of 50,000 consumers is generated, where each
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FIGURE 5 – Convergence of Perceived Price Sensitivity across Inspection Rounds
Notes: The two figures show the convergence of consumers’ perceived price sensitivity in both mean
and variance levels. We show the identification strategy with minor variable changes in the convergence
route. In these changes, we keep β̄ +δ (σ2

β
+σ2

0 ) in the left (right) subfigure constant and matched the
changes in δ and τ (σ0 and σs) to make their variation in the second inspection rounds similar. We see
different convergence routes in the later inspection rounds.

product is characterized by three binary list-page attributes. These attributes yield eight distinct

combinations, corresponding to eight different products. Including an outside option available

from the second inspection round onward, consumers make search, checkout, and purchase

decisions among nine alternatives. We implement the estimator as described in Appendix D.

The estimates in Column 2 of Appendix Table E.2 closely match the true parameter values in

Column 1, confirming the validity of our identification strategy and estimation procedure.

4.4 Estimation Sample

To reduce computational burden, we further restrict the estimation sample using the dataset

described in Section 2.2. We aggregate cellphone SKUs across colors and specifications, yield-

ing 275 distinct models. Among these, the 20 best-selling models (73% of total market sales)

are treated as individual products. For each model, list-page attributes are defined based on

the highest-selling specification. The remaining 255 models are grouped into three composite

products based on price tiers. Markets are segmented by purchase week. In each week, the

consumer’s choice set includes all products viewed at least once. Weekly prices for each model

are computed as the average of all recorded views in that week. Models unavailable in a given

week are excluded from that week’s choice set. As a result, consumers purchasing in different
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weeks face menus of 21 to 23 alternatives with week-specific pricing.

We consider only first views as inspections. Our model assumes that consumers are unaware

of product-page information before inspection and fully informed when making checkout deci-

sions. Thus, we treat all revisits to inspected products as free recalls of already-known infor-

mation. Consequently, abandoning a checkout to revisit an inspected product is not counted as

abandonment, as it is viewed as a recall of information. We record a checkout as abandonment

only if a subsequent checkout to an inspected product is observed.

Since we focus on consumers’ preference variation before and after their checkouts to in-

vestigate the preference discovery, we exclude consumers who only view products but do not

check out or purchase 14. The final sample includes 595,968 consumers. Table 2 describes the

main statistics and price patterns around the checkouts.

TABLE 2 – Descriptive Statistics of the Model Estimation Sample
Panel A: Search Behavior (Sequence Level)

All Buyers Non-buyers
Number of consumers 595,968 377,644 (63%) 218,324 (37 %)
Average number of products inspected 3.584 3.473 3.777
Average number of checkouts 1.301 1.322 1.265

Panel B: Search Behavior (Round Level)
Round All Buyers Non-buyers

No. of inspections in round 1 2.923 3.041 2.720
2 0.570 0.367 0.923
3 0.314 0.212 0.535
> 3 0.346 0.234 0.569

No. of consumers ending search in round 2 458,396 283,827 174,569
3 106,226 72,912 33,314
4 22,972 15,377 7,595

Panel C: Price Trends Across Inspection Rounds
Round All Buyers Non-buyers

Price of product inspected 1 390.1 390.9 388.5
2 401.2 384.3 412.8
3 389.1 373.2 402.6

Price of checkout products 1 379.2 375.6 385.5
2 373.4 374.9 362.6
3 359.7 360.7 352.6
4 346.5 346.0 349.8

We first note that, conditional on checking out at least once, the non-purchase rate is 36.6%,

compared to 77.3% in the sample used in Section 2.2. This indicates that consumers in our

14In other words, all consumers in our sample experience at least two inspection rounds
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estimation sample are generally more purchase-oriented rather than engaging in mere browsing.

Turning to consumers’ inspection and checkout behavior (see Panel A), consumers inspect,

on average, only 3.6 models in the choice set of the 18-20 individual products and 3 synthetic

products. Consumers check out multiple times: conditional on checking out at least once, each

consumer has an average of 1.3 checkouts.

Panel B presents patterns in consumers’ inspection behavior. Most inspections occur in the

first round. After the first checkout, consumers who exit the market inspect more products than

those who proceed to purchase. The checkout abandonment rate remains high across rounds:

only 283,827 consumers (47.6% of all) purchase after their first checkout. Additionally, 137,572

consumers (17.8%) pursue at least two checkouts, a behavior that cannot be attributed solely

to the additional information available at checkout. The ratio of purchasers to leavers remains

relatively stable across the first three checkouts.

Finally, Panel C presents statistics on the prices of products inspected and checked out.

Compared to the mixed price trend of inspected products, we observe a downward trend in the

prices of products taken to checkout for both buyers and non-buyers, as seen in Section 2.2.

This trend suggests that consumers display increasing price sensitivity in checkout decisions

as the number of checkouts grows, while inspection decisions cannot be explained solely by

preference changes.

Due to the large data scale, estimating our model on the entire sample is computationally

demanding and unnecessary. Therefore, we randomly select a subsample of 50,000 consumers

for estimation. As detailed in Section 4.1, we use the first three inspection rounds for estimation,

using subsequent rounds as a reference for prediction accuracy. This limitation has minimal

impact on the estimates, as it affects only 5.2% of the sample, and most of the inspections of

the affected consumers occur within the first three rounds.

5 Estimation Results

Our estimation results of the model can be found in Table 3. Columns 1 and 2 are the main

estimation results of our model. The estimated parameters include constant attribute-level pref-

erences, discovery parameters for the changing price sensitivity, and parameters for search costs.
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TABLE 3 – Parameter Estimates

(1) (2)
Pref Discovery Weitzman

Utility Parameters
γ:

RAM (1 GB) 0.0796 (0.0009) 0.0413 (0.0019)
Storage (100 GB) 0.0569 (0.0012) 0.0460 (0.0057)
Released after 2018 0.6289 (0.0049) 0.5925 (0.0087)
Apple 1.5337 (0.0077) 1.2425 (0.0165)
Samsung 0.1829 (0.0021) 0.1593 (0.0038)
Low-price synthetic 1.1822 (0.0067) 1.0409 (0.0132)
Mid-price synthetic 1.6120 (0.0074) 1.3495 (0.0146)
High-price synthetic 2.3655 (0.0096) 1.9184 (0.0197)

Discovery Parameters
β̄ : Mean of true price sensitivity (100$) -0.3353 (0.0014) -0.1757 (0.0027)
δ : Prior deviation from true price sensitivity 0.0983 (0.0015) -
σ

β̄
: SD of true price sensitivity 0.0645 (0.0006) 0.1084 (0.0028)

σ0: SD of initial belief means 0.1374 (0.0008) -
τ1: Initial learning speed 0.5219 (0.0057) -
σs: SD of the preference signal 0.3752 (0.0061) -

Outside Option Value Parameters
uoutside - 1.1358 (0.0118)
µoutside

0 -0.4363 (0.0223) -
ξ outside 3.6471 (0.1008) -

Search Cost Parameters
c̄: Mean of log search cost -0.5696 (0.0051) -1.6618 (0.0051)
σc: SD of log search cost 1.3364 (0.0051) 1.3364 (fixed)

N 50000 50000

Notes: The estimation results are based on the subsample drawn from a cleaned-up sample
of 595,968 consumers in Table 2. The standard deviation is calculated from the numerical
information matrix approximation and is shown in the parenthesis. For each consumer, we
draw 3,500 groups of errors in the preference discovery model estimation and 2,500 groups
in the Weitzman model estimation.

As a reference, we also estimate a Weitzman-style model using inspections and the last checkout

of the same sample, in which consumers search with their preferences drawn from the normal

distribution N (β̄ ,σβ ). The behavior of consumers checking out products in the middle of the

search process is considered random, independent, uninformative, and costless, leading to no

preference discovery. The Weitzman model estimates are stated in Columns 3 and 4. As Chung

et al. (2024) specified, σc is difficult to identify in a Weitzman-style search and much relies on

econometricians’ assumption. Hence, we use the estimate from the preference discovery model

for Weitzman model estimation.

All preference parameters toward product attributes are positive. Notice that these attributes
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can be obtained on the list page, influencing both consumers’ inspection and checkout decisions.

Our results are significant in all estimates partly because we have a large consumer sample,

each making multiple choices in a wide market. Consumers have a positive preference for

larger cellphone memory and storage, which coincides with intuition. Compared to other brands

(Xiaomi, Huawei, and Oppo), Apple and Samsung provide significantly larger brand effects,

consistent with their market shares. The estimates from the Weitzman model differ from the

discovery model but have similar scale and relative size, which confirms our model estimates.

The estimation results of our model suggest clear evidence of preference changing across

inspection rounds. The estimates of β̄ and δ show that consumers enter the market with a

significant positive bias compared to their true price sensitivity. For the rest of the estimates,

we show the estimated and predicted perceived price sensitivity curve in the left side graph

of Figure 6, assuming no stoppage at checkouts. We can see that consumers’ mean of the

perceived price sensitivity is around -0.24 against a mean of the true price sensitivity of -0.33.

The graph indicates an overall underestimation of the price sensitivity at the beginning of search.

As estimated from the first and second checkouts, consumers engage in search with an average

initial deviation of 29.3%. They become more price-sensitive as the search continues and shrink

the underestimation to 19% in the third inspection round, which displays an evident preference

discovery effect. We predict that preference discovery will shrink the mean deviation to 12.4%

after the fifth checkout. Specifically, if we assume that consumers in our population purchase in

the inspection round where they are recorded in the data, the average price sensitivity increases

by 10.6% compared to when consumers start searching.

The right side graph in Figure 6 illustrates the heterogeneity in the distribution and evolution

of price sensitivity. We show both the interquartile range and the interval between the 2.5th and

97.5th percentiles of perceived price sensitivity, highlighting a broad dispersion in consumers’

price sensitivity. Notably, 5.9% of simulated consumers start their search with a positive prior

preference for higher prices. This finding aligns with the Weitzman model estimates in Table 3

and is consistent with those consumers seeking more advanced product alternatives, given that

we do not control for product fixed effects. We also observe that the 2.5th percentile of true

price sensitivity lies above the corresponding perceived sensitivity, suggesting that around 20%
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FIGURE 6 – Price Preference Evolution: Curve and Simulated Deviation

of consumers would become less price-sensitive if they fully learned their preferences through

the search process.

Lastly, we report the mean and standard deviation estimates of log search cost in the bottom

panel of Columns 1 and 2 in Table 3. In Weitzman models, estimating the degree of random

variation in perceived reservation values relative to perceived utilities is often challenging due to

weak identification issues. Our model, by allowing search cost draws across inspection rounds

and assuming σε = 1, enables us to estimate the stochasticity in reservation values. We find

that σc is significantly large, with the standard deviation of mε(ci jr) reaching approximately 2.9

when calculated with the given search cost parameters. As a comparison, Jiang et al. (2021)

estimated heterogeneity at around 0.5 with a variance of 1 for ε using grid search. Such a big

difference likely stems from three aspects. First, Jiang et al. (2021) focused on a narrow market

with homogeneous goods (iPad mini 16G WiFi), examining reservation value variations among

sellers of the same product, while our model considers a very diversified cellphone market.

Second, Jiang et al. (2021) accounted for fixed effects across sellers, which our model does

not include. Lastly, our results capture reservation value stochasticity both across consumers

and across inspection rounds of the same consumer, the latter of which is absent in the Weitz-

man model, where reservation values are considered invariant for each consumer. This internal

variation in our model explains a significant amount of checkout abandonment.

The results support the findings in the descriptive statistics in Section 4.4. Though prefer-
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ence changes were less apparent for the price trend of inspected products, they are pronounced

in the checkout and purchase stages, indicated by the trend toward cheaper products at checkout.

Our model provides good predictions for the market share. After taking the weighted aver-

age across weekly markets, we show the market share data and predictions from the preference

discovery model and the Weitzman model in Figure 8. The market share of each product is the

ratio to the number of consumers who purchase, while the market share of the outside option is

the ratio to the sample size.
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.
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4. iPhone 11 Pro Max
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6. iPhone 7 Plus
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FIGURE 7 – Market Share: Data and Predictions: In Products
Notes: The market share of the outside option is calculated over the whole sample, while the market
share of each product is calculated conditional on purchase.

When conditional on a purchase, our model predicts market share similarly to the Weitzman-

style model. Although a predicted purchase in our model needs two checkouts in different

inspection rounds under both prior and posterior preferences, we do not observe a significant

decline in prediction quality. Both models perform poorly in some products because of the

correlation in product values. For example, the Samsung Galaxy A50 and A40 are released

closely, and their best-seller specifications share identical RAM size and storage. However, the
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product-page attributes of A50 are a much better choice than the A40, while in both models,

their product-page values are assumed to be drawn independently. We show the market share

across different brands in the following graph. The performance of market share predictions

across brands is much closer to what we see in the data.
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FIGURE 8 – Market Share: Data and Predictions: In Brand
Notes: The market share of each brand is calculated conditional on purchase.

Our model provides better predictions on the share of the leavers than the Weitzman model.

Specifically, the preference discovery estimate for the outside option value after the second

checkout is 1.1000, and after the third checkout, it is 1.6793. On the contrary, the Weitzman

estimate reports 1.1358 between the two values. Our estimates suggest that the outside option

becomes more attractive as the search goes on, showing that consumers leave the market not

only driven by a time-invariant outside value but also process-related factors.

To further show the model fit, we illustrate the predicted leave-continue ratio after each

checkout in Table 4. Our nonlinear specification for the outside option value provides a good

approximation to the data, capturing the leave-continue ratios not only for the first two check-

outs used in the estimation but also for subsequent rounds. For comparison, we estimated a

preference discovery model with an additional restriction that the outside option value remains

constant across rounds. In this case, the predicted leave-continue ratios deviate significantly

from the actual data. This supports the notion that preference discovery alone cannot fully ex-

plain the transitions from checking out a product to leaving the market. External disruptions
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likely increase the probability of market exit as the search process extends over time. Addi-

tionally, a Weitzman-style model, which assumes invariant perceived utilities for all products,

including the outside option, cannot capture variations in the outside option value.

Next, we report consumers’ predicted response to product-level price changes. The sum-

mary statistics of the own-price elasticity are reported in Table 5, and we compare it with the

own-price elasticity from the Weitzman model. Our model predicts a significantly more sensi-

tive own-price elasticity in response to a 1% price change, which is slightly below -2 across all

three markets, while the Weitzman model shows an elasticity around -1.5.

The distribution of the own-price elasticity of our model is shown in the left column of

Figure 9. In general, higher-priced products exhibit greater elasticity in later rounds, while

cheaper products become less elastic as the search process progresses. For cheaper products, a

one-percent price change results in a smaller increase in price disutility, which cannot offset the

utility gap created by product attributes and idiosyncratic preference signals. Conversely, for

more expensive products, price increases do not elicit a significant negative market response due

to the presence of consumers whose price insensitive or prefer luxury items. Price-insensitive

consumers are not largely affected by price increases, while luxury chasers are attracted by

more expensive prices. Consequently, the higher price does not drive many consumers away,

while customers of other high-priced products are attracted by the higher price, mitigating the

potential decrease in demand. In contrast, products in the mid-price range show highly elastic

demand in response to price changes.

The right column of Figure 9 illustrates the own-price elasticity for checkouts across differ-

TABLE 4 – Simulated Leave-Continue Choice Table
Leave After: 1st Checkout 2nd Checkout 3rd Checkout 4th Checkout

Population 29.29% 24.21% 24.22% 25.53%
Sample 29.38% 25.09% 24.24% 27.93%

21-model market prediction 28.91% 24.54% 23.49% 23.79%
22-model market prediction 27.36% 23.83% 22.62% 22.99%
23-model market prediction 26.75% 23.48% 22.74% 22.98%

23-model, constant outside value 33.62% 7.40% 6.02% 5.19%

Notes: This table simulates the rate of consumers who choose to leave the market after each checkout
using the estimates in Table 3 and the estimates to the same model only assuming the outside option
value is round-invariant. The population corresponds to the data described in Table 2 and the sample
corresponds to the 50,000 consumers used for estimation in 3.
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TABLE 5 – Summary Statistics of Own-Price Elasticity

Market Obs. Mean SD Min 50% Max

21-Model Discovery 21 -2.0828 0.8388 -3.3075 -2.2314 -0.3909
Weitzman 21 -1.4509 0.5721 -2.3291 -1.4630 -0.4389

22-Model Discovery 22 -2.0369 0.7830 -3.2746 -2.1234 -0.5010
Weitzman 22 -1.3960 0.5266 -2.2608 -1.3774 -0.4973

23-Model Discovery 23 -2.0770 0.7552 -3.2485 -1.9520 -0.5916
Weitzman 23 -1.4270 0.5106 -2.2067 -1.2865 -0.5461

Notes: The elasticities are derived by simulating how checkouts and demand change
following a one-percent increase in a product’s price.

ent inspection rounds. Generally, higher-priced products become more elastic in later rounds,

whereas cheaper products become less elastic as the search process continues. Figure 6 reveals

that consumers tend to be more price-sensitive in the later inspection rounds, and the proportion

of consumers with a positive price preference diminishes. The loss of luxury-preferring con-

sumers results in a more pronounced negative response to price increases, thereby increasing

the price elasticity of high-priced products.

Our estimates suggest that the Weitzman model significantly underestimates price elastic-

ity without accounting for the checkout abandonment and preference discovery. This occurs

because the Weitzman model overlooks selections made during the search process, instead de-

ferring them to the actual purchase observations. This leads to an overestimation of the search

process duration and an underestimation of both consumers’ true price sensitivity and the search

cost. In reality, consumers already make selection decisions when they take a product to check-

out; however, preference discovery, behavioral shocks, or higher outside value may prompt

them to abandon the checkout product, leading to an unpredicted extension of the search pro-

cess. While products that were not inspected before checkout may make use of the abandonment

and be inspected in the following rounds, this does not necessarily increase their likelihood of

being purchased, as consumers make checkout decisions with a more price-sensitive preference

in later rounds. In short, cheap checkouts are more likely to be checked out in the next rounds,

while expensive checkouts are not.

Corresponding to this, we conduct a counterfactual to show that a recommendation that

reduces the search cost will not be as lucrative as predicted. Such recommendations are widely

applied on online market platforms to increase the probability of being inspected. We consider
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FIGURE 9 – Own-Price Elasticity: Demand and Checkout

an extreme case in which the search cost is reduced to 0 such that the recommended product is

always inspected. We see the recommendation increase the product’s revenue in both models,

while in the Weitzman model, it is much larger than that in the preference discovery model. We

show the comparative difference between the predicted revenue of the two models in Figure 10.

Our results indicate that the predicted benefits of recommendation are relatively similar

between the two models for low-priced products. This is because these products are not sig-

nificantly impacted by preference changes; their low prices inherently limit the extent to which

perceived utility varies due to preference discovery. Consequently, the primary benefit of low-

priced products from the recommendation is from consumers’ increased inspections, which

yields similar gains in both models. However, for higher-priced products, the prediction dif-

ference between the models becomes more pronounced. Although these products benefit from

being included in the choice set without requiring inspections in both models, they are more af-

fected by preference changes in our model, which puts them at a disadvantage once a checkout

abandonment happens. In subsequent checkout decisions, the high price makes these products
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Notes: The graph shows how much larger the revenue prediction in the Weitzman Model than in the
Preference Discovery Model. We illustrate with a market of 21 models and simulate with 50000 con-
sumers 50 times using the estimation obtained in Table 3.

less likely to be selected by consumers with increased price sensitivity. This is reflected in our

counterfactual analysis, where the Weitzman model overestimates the benefits of recommend-

ing higher-priced products.

TABLE 6 – Welfare Changes of a One-click Buying Design (Percentage)

Market 21-model 22-model 23-model
One-click Purchase Probability 50% 100% 50% 100% 50% 100%

Average Utility of Purchasers -5.5 -8.8 -5.2 -8.3 -4.9 -7.9
Total Utility of All Consumers 2.7 4.7 2.8 4.6 2.8 4.8

Average Price of Purchased Products -0.3 -0.5 -0.3 -0.5 -0.3 -0.6
Total Revenues of Sellers 8.4 14.2 8.0 13.4 7.9 13.1

Total Search Costs -26.4 -44.5 -27.0 -45.6 -27.6 -46.5
Average Search Costs -32.3 -51.6 -32.6 -52.3 -33.0 -53.0

Notes: This table examines the percentage changes in consumer utility and average utility, seller
revenue and average product price, as well as consumer search costs and average search costs when
introducing a one-click purchase mechanism that is triggered with a 50% or 100% probability during
each checkout, compared to the baseline scenario where the mechanism does not exist. We conduct
50 simulations with N = 50000 simulated consumers using the parameter estimates in Table 3 and
report the averages.

We conclude by reporting the welfare effect of consumer preference discovery. Specifically,

we discuss how introducing a one-click buying design affects the true utility consumers derive

from purchased products, the transaction revenue, and the search costs incurred. We assume
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that the one-click buying is randomly triggered with a fixed probability, allowing consumers

to purchase a product without entering the checkout or engaging in preference discovery. The

results are presented in Table 6. Notably, in our model, the outside option value changes across

inspection rounds. To avoid considering the welfare effect from the outside option, we assign

a utility value of 0 to consumers who ultimately leave the market, taking that they derive no

utility from the current market.

Introducing a one-click buying design significantly increases the total utility consumers ob-

tain from the market. However, the utility for each buyer decreases under this design. One-click

buying can cause consumers to prematurely conclude their search process and make decisions

before well discovering their preferences. On the other hand, the design reduces the likelihood

of consumers leaving the market after checkouts, thereby increasing the total number of pur-

chases. The average purchase price remains stable, as premature buying leads consumers who

would still buy a product without the design to buy more expensive products, while others who

would have exited the market instead will be retained to buy cheaper products. The total seller

revenue increases significantly due to the higher amount of buyers.

We also observe that the total search costs incurred by consumers drop substantially under

the one-click purchase design as they inspect fewer products. Due to the reasons described in

Section 4.2, we cannot directly compare search costs with utility, so the overall welfare effect

depends on the potential heterogeneity of private product information. When the information

obtained through inspection has a better chance to significantly enhance consumer utility, the

welfare gains from reduced search costs cannot offset the losses from reduced search and prefer-

ence discovery. Otherwise, reducing unnecessary search and preference discovery may increase

consumer surplus.

6 Conclusion

Inferring consumer preferences from choice data plays a central role in analyzing market struc-

ture, informing platform strategy, and shaping regulatory policy. However, this approach relies

on a key assumption: that consumers fully know their preferences when making decisions.

While widely adopted, this assumption has been increasingly questioned in recent studies, and
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its empirical implications remain underexplored due to the lack of suitable field contexts.

Using click-stream data from an e-commerce platform that records smartphone search and

purchase behavior, we empirically examine the role of preference discovery in consumer search.

We focus on the checkout stage, where no new information is introduced, allowing us to isolate

behavioral adjustments captured by checkout abandonment decisions. Evidence from product

prices and attribute convergence before and after checkout attempts points clearly to the pres-

ence of preference discovery. These patterns suggest that consumers do not act on fixed price

sensitivity, but instead gradually form judgments about product value relative to price as they

progress through the search process.

Motivated by this evidence, we develop a structural model that incorporates preference dis-

covery and estimates the key parameters that govern its evolution. Capturing both checkout

abandonments and preference discovery is essential for accurately understanding and modeling

consumer decisions. Our results show that our model predicts significantly larger price elas-

ticities compared to standard search models. This is because consumers often initiate tentative

checkout attempts during the search process and exhibit greater price sensitivity after aban-

donment, which amplifies price competition. We also examine mechanisms such as one-click

purchases that encourage early choices to become final decisions. While such designs may

raise platform conversion rate and total revenue, they also risk limiting preference discovery,

potentially reducing consumer decision quality and surplus.

Our findings underscore the significance and ubiquity of preference discovery in real-world

consumer search. Rather than serving solely to acquire information, pre-purchase search also

facilitates self-reflection, helping consumers better understand their preferences. As a result,

the value of search lies not only in addressing information asymmetry but also in supporting

preference discovery. For market designers, these insights suggest the importance of tailoring

information disclosure, recommendation strategies, and search tool design to different stages of

the search journey. For regulators, the conclusions emphasize the need to guard against platform

mechanisms that prompt consumers to make premature decisions before their preferences have

been adequately established. Future work can build on these findings to further examine the

implications of preference discovery for market design and policy.
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Appendix



A Data Cleaning Process

Our raw clickstream data includes consumers’ view, checkout, and purchase clicks on the web-

site. Each click is recorded with the product SKU ID, consumer ID, timestamp, product cate-

gories (not used because of incompleteness and errors), product price, and consumer session.

The timestamps are in discrete intervals of 131,072 milliseconds, and for clicks occurring si-

multaneously in the data, we rank them following the dataset’s original order. The cleaning

process is as follows:

1. Match product SKU IDs to the attribute dataset containing information of 1,708 cellphone

product pages on the website, discarding unmatched clicks.

2. Remove all observations with a price value of 0.

3. For repeated actions (i.e., same product id, time, and event type with a nearby click by

the same user), retain only the first occurrence. This resulted in an initial search dataset

with 84,711,440 observations, 5,453,475 consumers, and 1,699 product pages.

4. Defined steps: Each step comprises consecutive actions by the same consumer on the

same SKU ID (e.g., checkout and purchase, or checkout, view, and checkout again). Since

no other product pages are involved, we treated these actions as a single step, retaining

only the highest-level event (purchase > checkout > view). This yielded 58,774,389 steps.

5. Exclude all steps occurring after a consumer’s first purchase, leaving 49,577,080 steps.

6. Remove consumers with only one step, resulting in a dataset with 48,223,442 steps,

4,099,837 consumers, and 1,690 product pages.

7. Expand the sample for reduced-form analysis by creating “view" records for all checkout

and purchase steps1: For steps containing a checkout, we created two records (view and

checkout). For steps containing a purchase, we create three records (view, checkout,

and purchase), all timestamped as occurring simultaneously. This produced a total of

49,722,578 data points.
1This expansion was not applied when defining steps, as some checkouts and purchases in the raw data were
recorded without a view.

A2



8. Sample selection: To control careless buyers or forgetting, we exclude sequences where

the purchase or the last view before exit occurs between 5 minutes and two weeks after

the first view click.

This results in the sample used in Section 2.2.

B More Tables and Figures for the Reduced-form Evidence

FIGURE B.1 – Convergence to Prices of Purchased Product

FIGURE B.2 – Convergence to Attributes of Purchased Product
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C Computation of the (Perceived) Reservation Value

The definition of reservation value is a possessed value that equalizes the expected gain from

inspecting a product j and the search cost of product j:

ci jr =
∫

εi j>v̄−vi jr

(εi j− (v̄− vi jr)) dF(εi j)

=

(
1−F

(
v̄− vi jr

σε

))∫
∞

εi j>(v̄−vi jr)
(εi j− (v̄− vi jr))

f (εi j)

1−F
(

v̄−vi jr
σε

)dεi j

=

(
1−F

(
v̄− vi jr

σε

))
·E(εi j− (v̄− vi jr) | εi j > (v̄− vi jr))

=

(
1−Φ

(
v̄− vi jr

σε

))
·

σε

φ

(
v̄−vi jr

σε

)
−0

1−Φ

(
v̄−vi jr

σε

) − (v̄− vi jr)


= σε ·

[
φ
(
ηi jr

)
−
(
1−Φ

(
ηi jr

))
ηi jr

]
where ηi jr =

v̄−vi jr
σε

. We apply the assumption εi j following a normal distribution in the

proof above. Φ(·) and φ(·) denote cdf and pdf of the Gaussian distribution respectively. The

first-order condition with respect to v̄ of the right-hand side is:

∂σε ·
[
φ
(
ηi jr

)
−
(
1−Φ

(
ηi jr

))
ηi jr

]
∂ v̄

= σε ·
1

σε

·
[
φ
′(ηi jr)− (1−Φ(ηi jr))+φ(ηi jr)ηi jr

]
= −ηi jrφ(ηi jr)− (1−Φ(ηi jr))+φ(ηi jr)ηi jr

= − (1−Φ(ηi jr))

which is always negative with a finite ηi jr. Notice that the left-hand side has a positive deriva-

tive, it implies a bijection between v̄ and ci jr. Therefore, we have a unique solution of v̄, denoted

by zi jr. Define m(x) = [(1−Φ(x))x+φ(x)]−1, we obtain the linear specification in Section 3.2.
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D Likelihood Function Construction

In Appendix D, we first compute the Li,discovery in detail:

Li,discovery = Pr(Ii ∈ Ii | pi,h1, pi,h2, · · · , pi,hr ,xh1,xh2 , · · · ,xhr , β̄ ,δ ,τ1,σβ̄
,σs)

where Ii = {εi,h1, · · ·εi,hR,βi1, · · · ,βiR}. Then, we show how to implement a Geweke-Hajivassilou-

Keane (GHK) style simulator to the likelihood function.

The checkout products in all inspection rounds {h1,h2, · · · ,hR} together with the last in-

spected products {J1,J2, · · ·JR} are observed from the data. In the classic Weitzman model, se-

lection decisions reflect stable utility relationships in the model. In our multi-round model, how-

ever, the perceived utilities of checkout products are compared in different inspection rounds,

with observed changes in checkout outcomes reflecting variations in consumer preferences. To

be more specific than Section 4.1, let Ξi = {εi,h1 · · ·εi,hR} and Bi = {βi1, · · ·βiR} are the two

subsets of Ψi. It requires constraints on Bi such that Ξi is non-empty. The curse of dimension-

ality limits the specification of these constraints in long search processes because the number

of inequality conditions exceeds the elements in Ψi as the number of rounds increases. There-

fore, we focus on the first three rounds of consumer search. In the following analysis, first, for

each case of the observed checkout sequence, we outline the inequality conditions on Ψi. Then,

we partition these conditions into preference constraints on Bi that guarantee the existence of a

solution, and value constraints on Ξi conditional on the preference constraints being satisfied.

Notice that there are no inequality conditions when there is only one inspection round in

the search sequence. We restate the inequalities and preference constraints of two-round search

processes in D.1, and extend to three-round search processes in D.2 and D.3. We introduce

the conditional distribution of the posterior mean in the preference discovery to facilitate the

implementation of the preference constraints in D.4. The implementation of our simulated

likelihood estimator will be introduced in D.5.
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D.1 Two-round Search Process

Suppose we observe consumer i’s search process consists of two inspection rounds, with Ψi =

{εi,h1,εi,h2,βi1,βi2}. When h1 = h2, the consumer checks out the same product in two inspection

rounds. Since we consider a two-round search sequence, it must be that the consumer purchases

the first checkout product. In this case, there are no inequality conditions between perceived

checkout product utilities. When h1 ̸= h2, we consider two subcases below:

D.1.1 J1 < h2 ≤ J2

In this subcase, consumer i inspects product h2 after she abandons h1. She does not know

the perceived utility of h2 when checking out h1 but knows product h1 when checking out h2.

The perceived utilities of h1 and h2 are compared only in Round 2, leading to one inequality

condition:

ui,h2,2 ≥ ui,h1,2⇒ εi,h1− εi,h2 < vi,h2,2− vi,h1,2 = xh2γ +βi1 pih2− (xh1γ +βi1 pih1)

We can always find {εi,h1,εi,h2} with any preferences {βi,h1,βi,h2} given, so there is no prefer-

ence constraint. In reality, this subcase would not happen because the consumer does not stop

searching after checking out product h2 (no purchase or leaving concludes the search). We raise

this subcase for completeness and to facilitate the understanding of more complicated cases.

D.1.2 h2 ≤ J1

This subcase is the example given in Section 4.1, consumer i inspects both h1 and h2 in the

first inspection round. We discussed the subcase h2 = h1 and now focus on the subcase of two

different checkout products, i.e., h2 ̸= h1. There are two inequality conditions that Ξi need to

fulfill with preferences given:

ui,h1,1 ≥ ui,h2,1⇒ εi,h1− εi,h2 > vi,h2,1− vi,h1,1 = xh1γ +βi1 pih1− (xh2γ +βi1 pih2)

ui,h2,2 ≥ ui,h1,2⇒ εi,h1− εi,h2 < vi,h2,2− vi,h1,2 = xh1γ +βi2 pih1− (xh2γ +βi2 pih2)
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We are not able to find Ξi that satisfies both inequalities unless the following condition is im-

posed on βi1,βi2:

(βi1−βi2)(pih1− pih2)> 0

D.2 Three-round Search Process: Three checkout products

When we consider the first three inspection rounds in search processes with at least three rounds,

the inequality conditions on Ψi become more complicated. We first discuss all subcases in

which consumer i checks out three different products.

D.2.1 h2 ≤ J1,h3 ≤ J1

In this subcase, all checkout products are inspected in the first inspection round, and compared

with each other in all three rounds. We observe such a checkout sequence only when the fol-

lowing six inequality conditions on Ψi hold simultaneously:



ui,h1,1 ≥ ui,h2,1⇒ εi,h1− εi,h2 ≥ vi,h2,1− vi,h1,1

ui,h1,1 ≥ ui,h3,1⇒ εi,h1− εi,h3 ≥ vi,h3,1− vi,h1,1

ui,h2,2 ≥ ui,h1,2⇒ εi,h1− εi,h2 ≤ vi,h2,2− vi,h1,2

ui,h2,2 ≥ ui,h3,2⇒ εi,h2− εi,h3 ≥ vi,h3,2− vi,h2,2

ui,h3,3 ≥ ui,h1,3⇒ εi,h1− εi,h3 ≤ vi,h3,3− vi,h1,3

ui,h3,3 ≥ ui,h2,3⇒ εi,h2− εi,h3 ≤ vi,h3,3− vi,h2,3

Ξi that satisfies these conditions is non-empty only when Bi fulfill the following preference

constraints: 
(βi1−βi2)(pi,h1− pi,h2)≥ 0

(βi1−βi3)(pi,h1− pi,h3)≥ 0

(βi2−βi3)(pi,h2− pi,h3)≥ 0

(D.2.1.a)

(D.2.1.b)

(D.2.1.c)

Notice when the two preference constraints involving the medium-price checkout product

are fulfilled, the rest one is naturally satisfied. For example, given pi,h1 > pi,h2 > pi,h3 , if

Condition (D.2.1.a) and Condition (D.2.1.c) hold, Condition (D.2.1.b) would also hold with-
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out any further condition. We use the subscript high, mid, and low to replace subscript r in

the price preference βir and the checkout product hr in inspection rounds with the highest,

medium, and lowest checkout product price correspondingly. The formal restrictions imposed

on {βi1,βi2,βi3} are: (βi,high−βi,mid)(pi,hhigh− pi,hmid)≥ 0

(βi,mid−βi,low)(pi,hmid − pi,hlow)≥ 0

D.2.2 J1 < h2 < J2,h3 < J1

When h2 is not inspected in the first round, it is not compared to h1 with preference βi1. The

inequality conditions on Ψi are given as follow:



ui,h1,1 ≥ ui,h3,1⇒ εi,h1− εi,h3 ≥ vi,h3,1− vi,h1,1

ui,h2,2 ≥ ui,h1,2⇒ εi,h1− εi,h2 ≤ vi,h2,2− vi,h1,2

ui,h2,2 ≥ ui,h3,2⇒ εi,h2− εi,h3 ≥ vi,h3,2− vi,h2,2

ui,h3,3 ≥ ui,h1,3⇒ εi,h1− εi,h3 ≤ vi,h3,3− vi,h1,3

ui,h3,3 ≥ ui,h2,3⇒ εi,h2− εi,h3 ≤ vi,h3,3− vi,h2,3

(D.2.2.a)

(D.2.2.b)

(D.2.2.c)

(D.2.2.d)

(D.2.2.e)

Notice that h3 is compared to h1 in Rounds 1 and 2, and compared and h2 in Rounds 2

and 3. Hence, if hmid = h3, combining inequalities (D.2.2.a), (D.2.2.d), (D.2.2.c) and (D.2.2.e),

we have the same preference restrictions as in section D.2.1. Inequality (D.2.2.b) becomes a

redundant constraint.

If hmid ̸= h2, we consider the rest two subcases separately.

1. Suppose hmid = h1. Combining Inequalities (D.2.2.a) and (D.2.2.d) leads to vi,h1,3 −

vi,h3,3 ≤ εi,h3 − εi,h1 ≤ vi,h1,1− vi,h3,1. εi,h3 − εi,h1 has a positive interval only when Re-

striction 1 is satisfied: (βi1−βi3)(pi,h1− pi,h3)≥ 0.

If Inequality (D.2.2.b) also holds, we must have the following:

εi,h3− εi,h2 ≤ vi,h1,1− vi,h3,1 + vi,h2,2− vi,h1,2 (D.2.2.f)
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On the other hand, Inequalities (D.2.2.c) and (D.2.2.e) require:

vi,h2,3− vi,h3,3 ≤ εi,h3− εi,h2 ≤ vi,h2,2− vi,h3,2 (D.2.2.g)

We want to determine preference constraints such that (D.2.2.f) and (D.2.2.g) can fulfill

simultaneously. The upper bound of (D.2.2.g) is naturally satisfied when vi,h1,1−vi,h3,1+

vi,h2,2− vi,h1,2 ≤ vi,h2,2− vi,h3,2, which is equivalent to (pi,h1 − pi,h3)(βi2−βi1) ≥ 0 (Re-

striction 2).

If Restriction 2 holds, Inequality (D.2.2.f) is binding. A positive interval for εi,h3 − εi,h2

only exists when vi,h1,1− vi,h3,1 + vi,h2,2− vi,h1,2 > vi,h2,3− vi,h3,3, equivalent to:

(pi,h2− pi,h3)βi3 ≤ (pi,h1− pi,h3)βi1 +(pi,h2− pi,h1)βi2

This existence condition is redundant when both Restrictions 1 and 2 hold. Combine

Restrictions 1 and 2, we have:

βi3 ≤ βi1 ≤ βi2 if h3 = hlow

βi3 ≥ βi1 ≥ βi2 if h3 = hhigh

If Restriction 2 does not hold, Inequality (D.2.2.f) is redundant to (D.2.2.g), The existence

condition for εi,h3−εi,h2 becomes (pi,h2− pi,h3)(βi2−βi3)≥ 0 (Restriction 3). Combining

Restrictions 1 and 3 leads to:βi3 ≤ βi2 ≤ βi1 if h3 = hlow

βi3 ≥ βi2 ≥ βi1 if h3 = hhigh

Therefore, the subcase has a positive probability only when βi3 fulfill the following pref-

erence constraints: βi3 ≤min{βi1,βi2} if h3 = hlow

βi3 ≥max{βi1,βi2} if h3 = hhigh

2. Suppose hmid = h2. Combining Inequalities (D.2.2.c) and (D.2.2.e) leads to vi,h2,3 −

vi,h3,3 ≤ εi,h3 − εi,h2 ≤ vi,h2,2− vi,h3,2. The interval is non-zero when the following Re-
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striction 1 is satisfied: (βi2−βi3)(pi,h2− pi,h3)≥ 0.

If Inequality (D.2.2.b) also hold, we have the following:

εi,h3− εi,h1 ≥ vi,h2,3− vi,h3,3 + vi,h1,2− vi,h2,2 (D.2.1.2.h)

At the same time, Inequalities (D.2.2.a) and (D.2.2.d) requires:

vi,h1,3− vi,h3,3 ≤ εi,h3− εi,h1 ≤ vi,h1,1− vi,h3,1 (D.2.2.i)

We want to set restrictions such that (D.2.1.2.h) and (D.2.2.i) can hold simultaneously.

Notice that (D.2.1.2.h) is binding only when vi,h2,3− vi,h3,3 + vi,h1,2− vi,h2,2 ≥ vi,h1,3−

vi,h3,3, which is equivalent to (pi,h1 − pi,h2)(βi2− βi3) ≥ 0. This condition is naturally

satisfied with Restriction 1 and hmid = h2 hold. Hence, (D.2.1.2.h) determines the lower

bound, and εi,h3−εi,h1 exists only if vi,h1,1−vi,h3,1≥ vi,h2,3−vi,h3,3+vi,h1,2−vi,h2,2, which

is equivalent to Restriction 2:

(pi,h2− pi,h3)βi3 ≤ (pi,h1− pi,h3)βi1 +(pi,h2− pi,h1)βi2

Combining Restrictions 1 and 2, we have the following preference constraints:


βi3 ≤min

{
βi1,

(pi,h1− pi,h3)βi1 +(pi,h2− pi,h1)βi2

pi,h2− pi,h3

}
if h3 = hlow

βi3 ≥max
{

βi1,
(pi,h1− pi,h3)βi1 +(pi,h2− pi,h1)βi2

pi,h2− pi,h3

}
if h3 = hhigh
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D.2.3 h2 < J1,J1 < h3 < J2

When h3 is not inspected in the first round, it is not compared to h1 with preference β1r. {Ii}

needs to satisfy the following conditions:



ui,h1,1 ≥ ui,h2,1⇒ εi,h1− εi,h2 ≥ vi,h2,1− vi,h1,1

ui,h2,2 ≥ ui,h1,2⇒ εi,h1− εi,h2 ≤ vi,h2,2− vi,h1,2

ui,h2,2 ≥ ui,h3,2⇒ εi,h2− εi,h3 ≥ vi,h3,2− vi,h2,2

ui,h3,3 ≥ ui,h1,3⇒ εi,h1− εi,h3 ≤ vi,h3,3− vi,h1,3

ui,h3,3 ≥ ui,h2,3⇒ εi,h2− εi,h3 ≤ vi,h3,3− vi,h2,3

Notice that now, h2 is compared to h1 in rounds 1 and 2 and h3 in rounds 2 and 3, while h1

and h2 are only compared in round 2. This subcase is a completely mirrored situation of Section

D.2.2. We can verify by going through the process in D.2.2 and obtaining similar preference

constraints, with only simple changes of exchanging βi2 and βi3 and h2 and h3. Eventually, the

preference constraints are as follows: when hmid = h2, it follows the subcase in Section D.2.1

with the same constraints. When hmid = h1:

βi2 ≤min{βi1,βi3} if h3 = hlow

βi2 ≥max{βi1,βi3} if h3 = hhigh

when hmid = h3:


βi2 ≤min

{
βi1,

(pi,h1− pi,h2)βi1 +(pi,h3− pi,h1)βi3

pi,h3− pi,h2

}
if h2 = hlow

βi2 ≥max
{

βi1,
(pi,h1− pi,h2)βi1 +(pi,h3− pi,h1)βi3

pi,h3− pi,h2

}
if h2 = hhigh

For the convenience of implementation, we rewrite the preference constraints of the two sub-

cases: when hmid = h1: (βi2−βi1)(pi,h2− pi,h1)≥ 0

(βi3−βi2)(pi,h3− pi,h2)≥ 0
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when hmid = h3:

(βi2−βi1)(pi,h2− pi,h1)≥ 0

(pi,h1− pi,h3)βi3 ≤ (pi,h2− pi,h3)βi2 +(pi,h1− pi,h2)βi1

Hence, the constraints on βi2 are just related to βi1.

D.2.4 J1 < h2 < J2,J1 < h3 < J2

In this subcase, both h2 and h3 are not compared to h1 in the first inspection round. We eliminate

two of the inequalities in Section D.2.1:



ui,h2,2 ≥ ui,h1,2⇒ εi,h1− εi,h2 ≤ vi,h2,2− vi,h1,2

ui,h2,2 ≥ ui,h3,2⇒ εi,h2− εi,h3 ≥ vi,h3,2− vi,h2,2

ui,h3,3 ≥ ui,h1,3⇒ εi,h1− εi,h3 ≤ vi,h3,3− vi,h1,3

ui,h3,3 ≥ ui,h2,3⇒ εi,h2− εi,h3 ≤ vi,h3,3− vi,h2,3

(D.2.4.a)

(D.2.4.b)

(D.2.4.c)

(D.2.4.d)

Combining inequalities (D.2.2.b), (D.2.2.d), we get:

(βi2−βi3)(pi,h2− pi,h3)> 0.

This is the preference constriant that preserves a non-zero domain for Ξi.

D.2.5 h2 < J1,h3 > J2

In this subcase, only h1 and h2 are compared in the first two rounds. Similar to the previous

subcase, we have four inequalities for Ii:



ui,h1,1 ≥ ui,h2,1⇒ εi,h1− εi,h2 ≥ vi,h2,1− vi,h1,1

ui,h2,2 ≥ ui,h1,2⇒ εi,h1− εi,h2 ≤ vi,h2,2− vi,h1,2

ui,h3,3 ≥ ui,h1,3⇒ εi,h1− εi,h3 ≤ vi,h3,3− vi,h1,3

ui,h3,3 ≥ ui,h2,3⇒ εi,h2− εi,h3 ≤ vi,h3,3− vi,h2,3

(D.2.5.a)

(D.2.5.b)

(D.2.5.c)

(D.2.5.d)
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Inequalities (D.2.2.a) and (D.2.2.b) can hold simultaneously only when:

(βi1−βi2)(pi,h1− pi,h2)> 0.

The other two inequalities can always be satisfied by proper-valued {εi1} for any price sensitiv-

ities.

D.2.6 h2 > J1,h3 > J2

In this subcase, Ii only fulfills three inequalities:


ui,h1,1 ≥ ui,h2,1⇒ εi,h1− εi,h2 ≥ vi,h2,1− vi,h1,1

ui,h3,3 ≥ ui,h1,3⇒ εi,h1− εi,h3 ≤ vi,h3,3− vi,h1,3

ui,h3,3 ≥ ui,h2,3⇒ εi,h2− εi,h3 ≤ vi,h3,3− vi,h2,3

Notice that constraints on the preferences are not required. There always exists Ξi that fulfills

the inequality conditions with any preferences given.

D.3 Three-round Search Process: Two or One checkout products

Consumer i may check out a product multiple times in her search process. If the checkout

product is the same in two or more inspection rounds, we eliminate the inequality conditions on

the perceived checkout product utilities across these rounds.

D.3.1 h1,h2,h3 ≤ J1 with Two out of Three Identical

Denote the two inspection rounds with the same checkout product by s1 and s2 and the other

inspection round by o. We eliminate two conditions in Section D.2.1 because they degenerate

into two equalities. The remaining four inequalities must still be satisfied simultaneously.



ui,hs1 ,s1 ≥ ui,ho,s1 ⇒ εi,ho− εi,hs1
≤ vi,hs1 ,s1− vi,ho,s1

ui,hs2 ,s2 ≥ ui,ho,s2 ⇒ εi,ho− εi,hs2
≤ vi,hs2 ,s2− vi,ho,s2

ui,ho,o ≥ ui,hs1 ,o
⇒ εi,ho− εi,hs1

≥ vi,hs1 ,o
− vi,ho,o

ui,ho,o ≥ ui,ho,s2 ⇒ εi,ho− εi,hs2
≤ vi,hs2 ,o

− vi,ho,o
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To ensure the existence of εi,ho− εi,hs1
, the following preference restrictions must hold:


(βi,s1−βi,o)(pi,hs1

− pi,ho)≥ 0

(βi,s2−βi,o)(pi,hs2
− pi,ho)≥ 0

Since pi,hs1
= pi,hs2

, the above conditions imply that βi,s1 and βi,s2 should be simultaneously

greater than or less than βi,o.

D.3.2 h1 = h2 ≤ J1,J1 < h3 ≤ J2

The comparison between h3 and h1 = h2 occurs in the second and third inspection rounds. The

inequalities for the perceived utilities are:


ui,h2,2 ≥ ui,h3,2⇒ εi,h2− εi,h3 ≥ vi,h3,2− vi,h2,2

ui,h3,3 ≥ ui,h2,3⇒ εi,h2− εi,h3 ≤ vi,h3,3− vi,h2,3

The two conditions can hold simultaneously only when:

(βi2−βi3)(pi,h2− pi,h3)> 0.

with pi,h1 = pi,h2 .

D.3.3 h1 = h3 ≤ J1,J1 < h2 ≤ J2

Product h2 and product h1 = h3 are compared under the preferences βi2 and βi3. The conditions

for the perceived utilities are:


ui,h2,2 ≥ ui,h1,2⇒ εi,h2− εi,h1 ≥ vi,h1,2− vi,h2,2

ui,h3,3 ≥ ui,h2,3⇒ εi,h2− εi,h3 ≤ vi,h3,3− vi,h2,3

εi,h2− εi,h3 can satisfy both conditions only when:

(βi2−βi3)(pi,h2− pi,h3)> 0.

with pi,h1 = pi,h3 .
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D.3.4 J1 < h2 = h3 ≤ J2

Product h2 is not compared to h1 in the first inspection round. The perceived utility inequalities

reduce to: 
ui,h2,2 ≥ ui,h1,2⇒ εi,h2− εi,h1 ≥ vi,h1,2− vi,h2,2

ui,h3,3 ≥ ui,h1,3⇒ εi,h3− εi,h1 ≥ vi,h1,3− vi,h3,3

with h2 = h3. The two inequalities can be satisfied simultaneously as long as εi,h2−εi,h1 is large

enough. We do not need to impose additional preference constraints.

D.3.5 h1 = h2 ≤ J1,h3 > J2

The only equality in this subcase is that product h3 surpasses h1 in the last inspection round:

ui,h3,3 ≥ ui,h1,3⇒ εi,h3− εi,h1 ≥ vi,h1,3− vi,h3,3

with h1 = h2. The condition can hold with any price preferences.

D.3.6 One checkout product

In this last case, we have h1 = h2 = h3. There are no other checkout products to be compared

with, and no inequality conditions on perceived checkout product utilities.

D.4 Preference Discovery Distribution

In this section, we show how the preference restrictions are imposed in preference discovery.

The conditional distribution of the preference posterior mean βi,r+1 given the prior mean βi,r,

the true preference βi, the prior variance σ2
r and the signal variance σ2

s is given by:

βi,r+1 = βi,r +
τ2

r
1+ τ2

r
(β s

i −βi,r) =
1

1+ τ2
r

βi,r +
τ2

r
1+ τ2

r
β

s
i

Hence, the conditional expectation and variance of of βi,r+1 is given by:

E(βi,r+1|βi) =
1

1+ τ2
r

βi,r +
τ2

r
1+ τ2

r
βi ≡ β̃i,r

Var(βi,r+1|βi) =

(
τ2

r
1+ τ2

r
σs

)2

≡ σ̃
2
s,r
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The conditional distribution of βi,r+1 is:

βi,r+1|βi,r ∼N
(

β̃i,r, σ̃
2
s,r

)

The preference discovery process is equivalent to recursively drawing the posterior mean from

the conditional distribution above. When preference restrictions are imposed, the underlying

distribution becomes a truncated normal distribution with the same parameters of {β̃i,r, σ̃2
s,r}

D.5 Simulated Likelihood Construction

Following the restrictions and inequalities in section D, we implement our estimator with a

Geweke-Hajivassilou-Keane (GHK)-style simulated likelihood. A GHK-style simulator recur-

sively makes random draws while enforcing inequality conditions on the randomnesses imposed

by the previous draws. Jiang et al. (2021) and Chung et al. (2024) introduced the GHK sim-

ulator of a Weitzman-style search model. Compared to their models, the selected product in

our model is replaced with the checkout product in all inspection rounds, and the preference

discovery process constrains the perceived utilities of checkout products. The construction of

the simulated likelihood can be summarized as follows:

1. Make nd draws of βi1, denoted by β d
i1.

2. If there are at least two inspection rounds, draw βi2 conditional on β d
i1 following the

distribution in D.3.4. Impose the following truncation conditions:

• In default cases, the upper bound β
u,d
i2 =+∞, the lower bound β

ℓ,d
i2 =−∞.

• In cases D.1.2, D.2.1, D.2.2 with hmid = h3, D.2.3 and D.3.1 with h1 ̸= h2: If pi,h2 >

pi,h1 , set the lower bound β
ℓ,d
i2 = β d

i1: if pi,h2 < pi,h1 , set the upper bound β
u,d
i2 = β d

i1

Obtain β d
i2. Compute Pr(βi2|β d

i1), the probability that β d
i2 falls in the interval {β ℓ,d

i2 ,β u,d
i2 }.

3. If there are at least three inspection rounds, draw βi3 for each draw conditional on β d
i2 and

β d
i1 following the distribution in D.4. Similarly to the previous step, impose the follow-

ing truncation conditions on the distribution by defining an upper and lower truncation
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boundary. The default boundaries are β
u,d
i3 =+∞ and β

ℓ,d
i3 =−∞. Adopt the correspond-

ing restrictions in each case in D.2 and D.3 to replace the boundary conditions, and draw

βi3 from the truncated conditional distribution.

Obtain β d
i3. Compute Pr(βi3|β d

i2,β
d
i1), the probability that β d

i3 falls in the interval {β ℓ,d
i3 ,β u,d

i3 }.

4. Denote the ordered set of preferences drawn in steps 1, 2, and 3 by Bd
i , Bd

i = {β d
i1}

(one inspection round), {β d
i1,β

d
i2} (two inspection rounds) or {β d

i1,β
d
i2,β

d
i3} (three in-

spection rounds). Compute Pr(Bi) = Pr(βi2|β d
i1) for two-round sequences, and Pr(Bi) =

Pr(βi2|β d
i1)Pr(βi3|β d

i2,β
d
i1) for three-round sequences. Pr(Bi) = 1 if there is only one in-

spection round.

5. For each draw d, given drawn preferences Bd
i , make random draws of Ξi = {εi,h1} (one

inspection round), {εi,h1,εi,h2} (two inspection rounds) or {εi,h1 ,εi,h2,εi,h3} (three inspec-

tion rounds) with respect to the inequality conditions on Ii in each specific case in D.1 and

D.2. One can realize it by drawing some ε first, and draw other εs conditional on the pre-

vious draws. For example, in D.1.2, we can first draw εd
i,h1

without any restrictions, then

draw εd
i,h2

conditional on εd
i,h1

. The orders for drawing perceived utilities in three-round

search sequences are listed below.

• In D.2.1, draw εd
i,hmid

first, then draw εd
i,hhigh

and εd
i,hlow

conditional on εd
i,hmid

. As

discussed, when εd
i,hmid
− εd

i,hlow
and εd

i,hhigh
− εd

i,hmid
satisfy the inequality conditions,

εd
i,hhigh

− εd
i,hlow

will also satisfy the condition with preference constraints held.

• In D.2.2 and D.2.3. There are only binding constraints on εi,h3−εi,h1 and εi,h3−εi,h2 .

We draw εi,h3 first, then draw εi,h1 and εi,h2 conditional on εd
i,h3

.

• In D.2.4 and D.2.5, draw ε for the products inspected in the same round following

D.3.1. ε of the product inspected in another round is drawn lastly.

• In D.2.6, draw εi,h1,εi,h2 ,εi,h3 sequentially.

• In D.3, draw ε for the checkout products in any order.

Obtain Ξd
i for each draw. Compute Pr(Ξi|Bd

i ) the probability that Ξi satisfy the inequality

conditions by taking the product of conditional probabilities of εir. Combining Ξd
i and
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Bd
i , we get the draw of the information set Id

i .

6. With Id
i , compute ud

i,hr,r for all inspection rounds r and vi, j,r for all products j in the market

and all inspection rounds r. Compute Probd
i,disc = Pr(Bi)Pr(Ξi|Bd

i )

7. For each d, draw one cd
i,Jr

for each inspection round r:

• If hr < Jr, draw cd
i,Jr,r with truncation condition cd

i,Jr,r ≤ m−1(ud
i,hr,r− vd

i,Jr,r). Com-

pute Pr(cd
i,Jr,r ≤ m−1

ε (ud
i,hr,r− vd

i,Jr,r)).

• If hr = Jr, randomly draw cd
i,Jr

. Set Pr(cd
i,Jr,r ≤ m−1

ε (ud
i,hr,r− vd

i,Jr,r)) = 1

In each inspection round r, compute yd
ir = min{ui,hr,r,zi,Jr,r}. Compute Probd

i,check =

∏r Pr(cd
i,Jr,r ≤ m−1

ε (ud
i,hr,r− vd

i,Jr,r)) for all inspection rounds r.

8. For each inspection round r with Jr+1 > Jr + 1, draw cd
i,Jr+1−1,r, · · · ,cd

i,Jr+1,r recursively

such that cd
i, j+1,r ≤m−1

ε (vd
i, j,r+mε(cd

i, j,r)−vd
i, j+1,r) = m−1

ε (zd
i, j,r−vd

i, j+1,r). The condition

ensures that the perceived reservation values are ranked in descending order of the search

process within each inspection round. Compute Probd
i,rank = ∏ j Pr(cd

i, j+1,r ≤ m−1
ε (zd

i, j,r−

vd
i, j+1,r)) for each j ∈ ∪r{Jr +1, · · · ,Jr+1−1}. If Jr+1 ≤ Jr +1 for all inspection round r,

set Probd
i,rank = 1.

9. For each inspection round r, compute Probd
i,inspect = ∏ j Pr(εi, j ≤ minr yd

ir− vd
i, j,r) for all

j inspected but not checked out in any inspection rounds r. If no product is inspected but

not checked out, set Probd
i,inspect = 1.

10. For each inspection round r, compute Probd
i,stop = ∏r ∏kr Pr(ci,kr,r ≥m−1

ε (yd
ir−vd

i,kr,r) for

all inspection rounds r and all product kr not inspected at the end of the inspection round

r. If J1 = |Mi|, set Probd
i,stop = 1.

11. Take the product of all probabilities above for each draw:

Ld
i = Probd

i,disc ·Probd
i,check ·Probd

i,rank ·Probd
i,inspect ·Probd

i,stop

and calculate the mean across all draws as the simulated likelihood of consumer i.
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E Monte Carlo Simulation Results

TABLE E.2 – Monte Carlo simulation results

True Value Estimates

γ1 0.5 0.5002
γ2 0.2 0.2018
γ3 -0.2 -0.1992

β̄ -1.2 -1.1974
δ 0.6 0.5975
σ

β̄
0.2 0.2035

σ0 0.25 0.2523
τ1 0.8 0.7974
σs 0.4 0.3783

µoutside
0 -1.6 -1.6039

ξ outside 1.0 1.0265

c̄: -0.75 -0.7504
σc: 0.25 0.2527

D 2500 2500
Log-Likelihood -258975 -258969
N 50000 50000

Notes: The Monte-Carlo simulation assumes a mar-
ket of 8 products and an outside option. Products are
assigned with individual-specific prices.

F Proof of Identification

Our model identifies preference and search cost parameters similar to those in the literature with

Weitzman-style search models. The difference is that the preferences are identified within each

inspection round, which is used to identify the parameters in the preference discovery process.

The individual-level revealed preference and parameters can be identified from a consumer’s

observed inspection and checkout decisions. Given that these individual-level parameters have

been identified, the distributions of the parameters are known to us, and the parametric prefer-

ence discovery process can be identified. The parametric functional form is assumed preroga-

tively because consumers in our model may terminate their search process due to within-round

checkout decisions, which exogenously determines the truncation of the preference discovery.
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Therefore, a nonparametric identification is not available but a parametric form preference dis-

covery process can still be identified.

F.1 Identification within Inspection Rounds

The proof of within-round identification closely follows ?. Consider the perceived reservation

value of product j to consumer i:

zi jr = x jγ + pi jβir +mε

(
ci jr

)
Here, ci jr follows a log-normal distribution with variance known from the assumption, and

mε(.) monotonically decreases with a known function form. Therefore, we can identify the

mean and the variance of ci jr as long as mε(ci jr) is identified. We denote ζ = mε(ci jr) and

rewrite the perceived reservation value as follows:

zi jr = x jγ + pi jβir +ζi jr ≡ vi jr +ζi jr

First, we consider the case where the checkout product hr is not the last product inspected

in the current inspection round. We represent perceived reservation values of all products and

perceived utilities of inspected products in stacked vectorized forms as follows:

zk
ir = (zi,Jr,r,zi,Jr−1,r, · · · ,zi,Jr−1+1,r)

⊤, zu
ir = (zi,Jr+1, · · · ,zi,|M|,r)

⊤,

uk′
ir = (ui,1,r, · · · ,ui,hr−1,r,ui,hr+1,r, · · ·ui,Jr,r)

⊤

zk
ir = vk

ir +ζk
ir, zu

i = vu
ir +ζu

ir, uk′
i = vk

ir +εk
ir

If no product is inspected in round r, zk
ir is an empty vector. Conditional on products

1,2, · · · ,Jr−1 are inspected before round r, the probability of observing consumer i inspect
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Jr−1 +1, · · · ,Jr and checkout product hr is given by:

Prob(round r) = Pr


D̂︸︷︷︸

(Jr−Jr−1+|Mi|−1)×(Jr−Jr−1+|Mi|)



ui,hr,r

zk
ir

zu
ir

uk′
ir


(Jr−Jr−1+|M|)×1

≤ 0



= Pr


D̂



εi,hr

ζk
ir

ζu
ir

εk
ir


≤−D̂



ζk
ir

vk
ir

vu
ir

vk′
ir




, where D̂ =

D̂1 D̂2

D̂3 D̂4



Consisting four parts, the difference matrix D is of rank Jr− Jr−1 + |Mi|−1:

D̂1 =



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

... . . . . . . ...
...

0 0 · · · 1 −1 0

0 0 · · · 0 1 −1


(Jr−Jr−1)×(Jr−Jr−1+1)

, D̂2 = {0}(Jr−Jr−1)×(|Mi|−1)

D̂3 =



−1 0 · · · 0

−1 0 · · · 0
...

... . . . ...

−1 0 · · · 0


(|Mi|−1)×(Jr−Jr−1+1)

, D̂4 = I(|Mi|−1)×(|Mi|−1).

Following Train (2009), since we know the distribution of εi j as a scale normalization,

identification for a within-round search process holds with a location normalization as Berry

and Haile (2014) specified in a perfect information environment.

Then, we consider the case where hr = Jr and Jr > J− r−1. The only difference is that

we now take out zi,Jr,r because we cannot identify the relative size between zi,Jr,r and ui,Jr,r.

However, we know that both values are larger than the perceived utilities of inspected products

and perceived reservation values of uninspected products. Hence, we follow all vectorized
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expressions and express the probability of observing consumer i’s search and checkout decisions

in round r as:

Prob(round r) = Pr


D̃︸︷︷︸

(Jr−Jr−1+2·|Mi|−3)×(Jr−Jr−1+|Mi|)



ui,hr,r

zk
ir

zu
ir

uk′
ir


(Jr−Jr−1+|M|)×1

≤ 0



= Pr


D̃



εi,hr

ζk
ir

ζu
ir

εk
ir


≤−D̃



ζk
ir

vk
ir

vu
ir

vk′
ir




, where D =


D̃1 D̃2

D̃3 D̃4

D̃5 D̃6



The difference matrix D̃ consists of six parts:

D̃1 =



0 1 −1 0 · · · 0 0

0 0 1 −1 · · · 0 0
...

...
... . . . . . . ...

...

0 0 0 · · · 1 −1 0

0 0 0 · · · 0 1 −1


(J−1)×(J+1)

, D2 = {0}(J−1)×(|M|−1),

D̃3 =


−1 0 0 · · · 0

...
...

... . . . ...

−1 0 0 · · · 0


(|M|−1)×(J+1)

, D̃4 = I(|M|−1)×(|M|−1)

D̃5 =


0 −1 0 · · · 0
...

...
... . . . ...

0 −1 0 · · · 0


(|M|−1)×(J+1)

, D̃6 = I(|M|−1)×(|M|−1)

D̃ is also of rank Jr− Jr−1 + |Mi|− 1, one smaller than the number of errors and equal to

the number of error differences. The model remains identified as in the previous case.

The way of computing the joint probability is very similar. Instead of imposing the inequal-

ity εi j ≤min{ui,hr,r,zi,Jr,r}−vi jr, for all product j inspected but never taken to the checkout, we
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impose εi j ≤minr{min{ui,hr,r,zi,Jr,r}−vi jr} for all r in which product j has been inspected. By

doing this, only one distinctive restriction on εi j is binding, and the model stays identified.

F.2 Identification across Inspection Rounds

From the within-round estimation, we identify consumers’ price preferences individually. Be-

cause we only have limited observations on three inspection rounds, nonparametric identifi-

cation of the preference discovery process is unavailable. However, if we focus on a normal

Bayesian learning process, the learning parameters can be just identified with the distribution

parameters of prior preferences. Remember the distributions of the real preference, the prior

belief, the prior mean, and the preference signal:

Real preferences: βi ∼N (β̄ ,σ2
β
)

Prior belief: N (βi1,(τ1σs)
2)

Prior mean: βi1 ∼N (βi +δ ,σ2
0 )

Preference signals β
s
ir ∼N (βi,σ

2
s )

For the real preference, the prior mean and the preference signal, the difference between

the realized draw and the mean of the distribution is denoted by ∆iβ , ∆i0 and ∆ir for the signal

received at the end of inspection round r. Consumer i’s prior mean, the mean of prior means

across consumers, and the variance of prior means across consumers in round 1 are as follows:

βi1 = β̄ +∆iβ +∆i0 +δ

β̄1 = β̄ +δ

σ
2
β1

= σ
2
β
+σ

2
0

Notice that the prior mean is the preference that consumer i acts on in round 1, and the mean of

prior means is the observed mean of the preference the sample acts on in round 1.

After entering the checkout page, consumers receive a preference signal. Following De-

Groot (1970), consumer i’s prior mean, the mean of prior means across consumers, and the
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variance of prior means across consumers in round 2 are as follows:

βi2 =
1

τ2
1 +1

βi1 +
τ2

1
τ2

1 +1
β

s
i1

=
1

τ2
1 +1

(
β̄ +∆iβ +∆i0 +δ

)
+

τ2
1

τ2
1 +1

(
β̄ +∆iβ +∆i1

)
= β̄ +∆iβ +

1
τ2

1 +1
(∆i0 +δ )+

τ2
1

τ2
1 +1

∆i1

β̄2 = β̄ +
1

τ2
1 +1

·δ

σ
2
β2

= σ
2
β
+

(
1

τ2
1 +1

)2

σ
2
0 +

(
τ2

1
τ2

1 +1

)2

σ
2
s

In the second inspection round, some consumers purchase products taken to the checkout

in the first round. Because these consumers do not perform a third round, the preference dis-

tribution we observed in the third inspection round is censored. We recover the distribution of

the preferences via simulation, and represent the recovered mean and variance of the sample

preference similar to the previous rounds.

βi3 =
1

2 · τ2
1 +1

βi1 +
τ2

1
2 · τ2

1 +1
β

s
i1 +

τ2
1

2 · τ2
1 +1

β
s
i2

=
1

2 · τ2
1 +1

(
β̄ +∆iβ +∆i0 +δ

)
+

τ2
1

2 · τ2
1 +1

(
β̄ +∆iβ +∆i1

)
+

τ2
1

2 · τ2
1 +1

(
β̄ +∆iβ +∆i2

)
= β̄ +∆iβ +

1
2 · τ2

1 +1
(∆i0 +δ )+

τ2
1

2 · τ2
1 +1

∆i1 +
τ2

1
2 · τ2

1 +1
∆i2

β̄2 = β̄ +
1

2 · τ2
1 +1

·δ

σ
2
β2

= σ
2
β
+

(
1

2 · τ2
1 +1

)2

σ
2
0 +2 ·

(
τ2

1
2 · τ2

1 +1

)2

σ
2
s

With means and variances in three inspection rounds observed and the preference in each

round individually identified, the six parameters that describe the preference discovery process

are just identified under the given functional form.

Notice that the functional form of the preference discovery depends on the researchers’

choice. Setting a more flexible functional form for the Bayesian learning process is also possi-

ble. However, a more flexible learning process usually relates to more parameters. To identify
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the additional parameters, one may need more moment conditions other than the mean and vari-

ances of the preferences in the first three inspection rounds, which could be difficult to obtain

in a preference discovery process.
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