Programming and Quantitative Skills: R

Christoph Walsh

2023

What is R and RStudio?

- R is a programming language which specializes in statistical computing and graphics.
- A programming language is a way to instruct a computer to perform operations via written text.
- When programming, we need to be very exact. Otherwise the computer will throw and error or do something we didn't intend it to do!
- RStudio is a desktop application where you can write R code, execute R programs, and view plots created by R.

Why Learn R?

R has many benefits over some alternatives:

- R is free and open source.
- Large active community creating packages and providing support.
- Easier to learn than some alternatives.
- Availability of RStudio for free.
- R is extremely versatile. For example, these slides were made in RStudio!

Learning R also doesn't end after the exam for this course. In the 2nd year you will take Statistics 2 where you will learn how to estimate and use various statistical models in R.

Installing R

- To download and install R, go to https://mirror.lyrahosting.com/CRAN.
- To download and install RStudio, go to https:// posit.co/download/rstudio-desktop/.

The R Console

- We can perform calculations in the Console tab in RStudio.
- At the most basic level, we can use it as a simple calculator:
- Add: 2 + 3
- Subtract: 5 - 3
- Multiply: 2 * 3
- Divide: 3 / 2
- Exponentiation: $2^{\wedge} 3$
- Combining operations: $(2+4) /(4 * 2)$

R Functions

- Just like Excel, R has functions.
- These functions work in a very similar way:
- Functions have names, and we provide arguments to functions inside parentheses.
- In the next few slides we will see some examples of mathematical functions and how to evaluate them in R .

Absolute Value

- The absolute value function turns negative numbers into positive ones and has no effect on zero or positive numbers.

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { otherwise }\end{cases}
$$

Absolute Value in R

- The absolute value function in R is called abs. We can use it as follows:
abs(-2)
[1] 2
abs(3)
[1] 3
- We can see help about a function using help(abs) or ?abs

Principal Square Roots

- The square root of a number is the y that solves $y^{2}=x$.
- If $x=4$, both $y=-2$ and $y=2$ solve $y^{2}=x$.
- The principal square root is the positive y solving this.

Principal Square Roots in R

- We can use the sqrt () function or take to the power of $\frac{1}{2}$ to take the square root.
sqrt(9)
[1] 3
$9^{\wedge}(1 / 2)$
[1] 3
- The cubed root is the y that solves $y=x^{3}$. We can calculate this in R by taking the power of $\frac{1}{3}$.
$8^{\wedge}(1 / 3)$
[1] 2

The Exponential Function

The exponential function is a very common function in statistics:

$$
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

Note: you don't need to know this function for the exam.

The Exponential Function in R

- In R we use the $\exp ($) function to calculate the exponential of a number:
exp(0)
[1] 1
exp(1)
[1] 2.718282

The Logarithm

- Another common mathematical function is the logarithm, which is like the reverse of exponentiation.
- The \log of a number x to a base b, denoted $\log _{b}(x)$, is the number of times we need to multiply b by itself to get x.
- For example, $\log _{10}(100)=2$, because $10 \times 10=100$. We need to multiply the base $b=10$ by itself twice to get to $x=100$.

The Natural Logarithm

- A special logarithm is the natural logarithm, $\log _{e}(x)$, which is the logarithm to the base $\exp (1)=e^{1} \approx 2.7183$. This is also written as $\ln (x)$.

The Logarithm in R

- In R we use the $\log ()$ function to calculate the natural logarithm:
log(1)
[1] 0
- We can calculate the logarithm of a number to a different base using the base argument. For example, for $\log _{10}(100)$:
$\log (100$, base $=10)$
[1] 2

The Assignment Operator: <-

- We can store objects using the assignment operator, <-.
- For example:
a <- 2
b <- 3
- a and b are then visible in the Environment tab in RStudio.
- We can then use a and b for calculations:
a + b
[1] 5

Common Object Types: Numerical, Logical and Character

- Numerical vectors (list of numbers):

$$
a<-c(1,3,7,2)
$$

- Logical vectors (list of Yes/No responses):
$a<-c(T R U E, F A L S E, T R U E, T R U E)$
- Character vectors (list of letters/words):
a <- c("programming", "and", "quantitative", "skills")

Common Object Types: Factors

- Categorical variables are stored in R as "factors".
- For example, imagine a survey asking how long it took for people to get to campus (in minutes) and their travel mode (one of "cycle", "train", or "walk").
- You could store these variables as a numerical and a character variable:

```
time <- c(25, 20, 15, 10, 17, 30)
travel_mode <- c("train", "train", "walk",
    "cycle", "walk", "train")
```

- But if we tell R that this travel mode variable is a categorical variable, it will be useful for operations that we will learn later. We can convert this to a factor using the factor function:

```
travel_mode <- factor(travel_mode)
```


Common Object Types: Data Frames and Lists

- A data. frame collects vectors of the same length into a single dataset.
- We can convert the time and travel_mode variables into a data.frame as follows:

```
df <- data.frame(travel_mode, time)
```

- We can also "View" it in RStudio by clicking on it in the Environment tab.
- A data. frame is actually a special type of list:
my_list <- list(x = 1:3, y = TRUE, z = c("a", "b"))
- While vectors must have all elements of the same type (numeric/logical/character/factor), lists can have elements of any type and any length.
- Dataframes can have columns of different types, but all columns must have the same length.

Indexing Vectors with Numbers

- The elements of a vector like:

$$
a<-c(1,2,4,3,2)
$$

are indexed 1-5.

- We can extract elements from this vector using these indices:

$$
\begin{aligned}
& a[3] \\
& {[1] 4} \\
& a[c(1,3,4)] \\
& {[1] 143}
\end{aligned}
$$

Indexing Vectors with Logical Vectors

- We can also index vectors using an equal-length logical vector, where we exract only the elements that are TRUE:
$a<-c(1,2,4,3,2)$
$a[c(T R U E, F A L S E, ~ T R U E, ~ T R U E, ~ F A L S E)]$
[1] 143

Sequences

We can create vectors that are sequences of numbers in different ways:
1:10

$$
\begin{array}{cllllllllll}
\text { [1] } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

$10: 1$

$\begin{array}{cllllllllll}{[1]} & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100\end{array}$
seq(from $=0$, to $=1$, length.out $=5$)
[1] $0.00 \quad 0.250 .50 \quad 0.75 \quad 1.00$

Repeating Numbers and Vectors

To save time typing, we can repeat numbers and vectors with the rep() function:

```
rep(1, times = 20)
    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rep(1:3, times = 4)
    [1] 1 2 3 1 2 3 1 2 3 1 2 3
rep(1:3, each = 4)
[1] 1 1 1 1 1 2 2 2 2 3 3 3 3
```


Summary Statistics for Vectors

```
a <- 1:10
a
    [1]}10
    length(a)
    [1] 10
    min(a)
    [1] 1
    max(a)
    [1] 10
```


Summary Statistics for Vectors

mean(a)

[1] 5.5
median(a)
[1] 5.5
sum(a)
[1] 55
summary (a)

Min.	1st Qu.	Median	Mean 3 3rd Qu.	Max.	
1.00	3.25	5.50	5.50	7.75	10.00

Tabulate a Vector

```
a <- c(1, 3, 2, 4, 4, 2, 4)
table(a)
a
1234
1213
```


Comparing Numerical Vectors

```
a <- 1:5
b <- 5:1
a
```

[1] 12345
b
[1] 54321
a < b
[1] TRUE TRUE FALSE FALSE FALSE
a <= b
[1] TRUE TRUE TRUE FALSE FALSE

Comparing Numerical Vectors

$a==b$
[1] FALSE FALSE TRUE FALSE FALSE
$\mathrm{a} \quad!=\mathrm{b}$
[1] TRUE TRUE FALSE true true
$a>=b$
[1] falSe false true true true
a > b
[1] FALSE FALSE FALSE TRUE TRUE

Comparing Logical Vectors

a <- c(TRUE, TRUE, FALSE, FALSE)
b <- c(TRUE, FALSE, TRUE, FALSE)
We use \& for logical AND, I for logical OR and! for logical NOT.
a \& b
[1] TRUE FALSE FALSE FALSE
a | b
[1] TRUE TRUE TRUE FALSE
!a
[1] FALSE FALSE TRUE TRUE

R Scripts

- When working on a project, it's often better to write all the commands you want to run in an R script instead of directly into the console:
- It documents and saves your work.
- It makes your work shareable and reproduceable.
- You can edit earlier commands in a chain of commands.
- It's easier to spot mistakes.
- There are different ways of "running" an R script:
- Selecting all or a subset of lines and hitting "Run".
- Sourcing "with echo" and "without echo".

Commenting in R Scripts

- When writing code it's good practice to write "comments" to help others (and you!) understand your code.
- Anything written after a \# symbol is ignored by the R console. So we precede all comments with a \#.

```
# Set values of a and b:
a <- 2
b <- 3
print(a + b) # Compute the sum of a and b and print:
```

[1] 5

- Commenting is also useful if you want to temporarily disable a certain part of your script. You just need to put a \# before the commands you want to disable.
- This is called "commenting out".
- Select the lines you want to comment out, then go to Code \rightarrow Comment/Uncomment Lines.

CSV files

- The most common way we read data into R is through CSV (comma-separated values) files.
- These are plain text files with a . csv extension.
- We would store our travel mode survey data in a CSV file like this:

```
travel_mode,time
train,25
train,20
walk,15
cycle,10
walk,17
train,30
```


CSV files: Commas in data points

- Each line needs to have the same number of commas.
- If data points contain commas themselves (e.g. suppose a category was train, cycle), we need to wrap the data points with quotes.
- So often you will see CSV files where the text is wrapped in quotes:

```
"travel_mode","time"
"train",25
"train",20
"walk",15
"cycle",10
"walk",17
"train",30
```


CSV files: Comma decimal separators

- In continental Europe, commas are used as decimal separators: "one and a half" is written as 1,5 .
- Clearly this will cause problems with CSV files!
- So sometimes you might see files with ; delimiting variables instead of ,.
- An example of that would be:

```
"travel_mode";"time"
"train";25,0
"train";20,0
"walk";15,0
"cycle";10,0
"walk";17,0
"train";30,0
```

- When this happens, we need to tell R that the file is using a ; separator.
- In the exam, however, we'll deal exclusively with more standard CSV files.

Reading CSV files into R

- In order to read a CSV file into R , we need to tell R where the file is located on our computer.
- There are three different approaches to do this:
(1) The absolute path method
(3) The relative path method
(3) The RStudio Projects method (my recommendation!)
- For this we save the travel mode data in a file called test.csv.

Reading CSV files into R: The Absolute Path Method

- This approach involves giving R the full path to the file.
- On Windows, the full path of would look something like C: \Users \username\Documents \test.csv.
- However, the backslash has a special purpose in R so we can't use this.
- We need to use either forward slashes ("/") or double-backslashes ("\"):
- C:/Users/username/Documents/test.csv
- C:
Users
username
Documents
test.csv
- The fastest way to get the full path to a file is with the file. choose() command.
- Run the command, navigate to the file, and then the full file path with appear in the console. You can then copy this to your clipboard.
- You can then paste this as an argument into the read.csv() command:

```
df <- read.csv("C:\\Users\\username\\Documents\\test.csv")
```

- When we use this approach, it doesn't matter what the current working directory of the R process is.

Reading CSV files into R: The Relative Path Method

- We can find out what the current working directory is with getwd().
- To change it to the Documents folder, we can use the setwd() command.
- When the R process is in the working directory with the data, we only need to provide the name of the file in the read.csv() command.
- The steps would then be:

```
setwd("C:\\Users\\username\\\Documents\\")
df <- read.csv("test.csv")
```

- Suppose the full path of the file was actually "C:
Users
username
\Documents
data
test.csv"
- We could then read in the data from the Documents folder by only giving the relative path to the file, which is "data
test.csv":

```
setwd("C:\\Users\\username\\\Documents\\")
df <- read.csv("data\\test.csv")
```


Reading CSV files into R: The RStudio Projects Method

- If you share your code with someone, they will have to edit these lines that read in the data, or change the working directory. This is not ideal!
- A better way to deal with file paths is by using the RStudio Project feature.
- Suppose you saved your data in a folder called PQS on your computer.
- To go File \rightarrow New Project, choose "Existing Directory", and navigate to the PQS folder.
- When you are in the PQS project, RStudio automatically changes the current working directory to that folder. Then you don't need to provide the full file path, or use the setwd() command.
- Therefore I recommend this approach over the previous methods.

R Packages: Installing a Package

- Up to now, all the functions we have been using come by default with R.
- We call the default functionality "base R".
- But people have written packages that expand the functionality of R to do more things.
- For example, base R is not able to read in data from an Excel file.
- But there are several packages that can do this.
- We'll learn how to do this using the readxl package.
- To install a package, you can use the command:
install.packages("readxl")
- Alternatively, you can install the package using Tools \rightarrow Install Packages... in RStudio.

R Packages: Loading and Using a Package

- R doesn't load up the functions of all the installed packages by default. We also need to load a package after we install it.
- We can do this with the library () command:

library(readxl)

- If a package is not installed, the library function will return an error.
- To read in a file called test.xlsx in the current working directory, we do:
df <- read_excel("test.xlsx")
- The read_excel () function loads the data as a tibble, which is like a data. frame but with a few extra features. We can force the data to be a plain data.frame with:

```
df <- data.frame(read_excel("test.xlsx"))
```


Dataframes: Eredivisie Data

1	team	ins 20	draws	losses	goals_for $\begin{array}{r}68\end{array}$	goals_against
2	Ajax	20	9	5	86	38
3	Excelsior	9	5	20	32	71
4	FC Emmen	6	10	18	33	65
5	FC Groningen	4	6	24	31	75
6	FC Twente	18	10	6	66	27
7	FC Utrecht	15	9	10	55	50
8	FC Volendam	10	6	18	42	71
9	Feyenoord	25	7	2	81	30
10	Fortuna Sittard	10	6	18	39	62
11	Go Ahead Eagles	10	10	14	46	56
12	NEC	8	15	11	42	45
13	PSV	23	6	5	89	40
14	RKC Waalwijk	11	8	15	50	64
15	SC Cambuur	5	4	25	26	69
16	Sparta Rotterdam	17	8	9	60	37
17	Vitesse	10	10	14	45	50
18	sc Heerenveen	12	10	12	44	50

Dataframes: Indexing

- We can get the $2 n d$ row and 3 rd column of df with $d f[2,3]$.
- We can the team name and number of wins variables for Ajax, Feyenoord and PSV with $d f[c(2,9,13), c(1,2)]$.
- We can extract all variables for Ajax with $\operatorname{df}[2, \quad]$.
- We can extract all values for "goals for" with df[, 5].
- We can also extract all values for a column with a variable name:
- df\$goals_for.
- df[, "goals_for"].
- df[["goals_for"]].
- We can extract several columns with:
- df[, c("team", "goals_for")]
- To get the rows for all teams with at least 20 wins: $\operatorname{df}[\mathrm{df} \$ \mathrm{wins}>=20, \quad]$.

Dataframes: Creating Variables - Goal Difference

```
df$goal_diff <- df$goals_for - df$goals_against
head(df)
```

	team wins	draws	losses goals_for	goals_against goal_diff			
1	AZ	20	7	7	68	35	33
2	Ajax	20	9	5	86	38	48
3	Excelsior	9	5	20	32	71	-39
4	FC Emmen	6	10	18	33	65	-32
5	FC Groningen	4	6	24	31	75	-44
6	FC Twente	18	10	6	66	27	39

Dataframes: Creating Variables - Total Points

$$
\text { Points }=3 \times \text { Wins }+1 \times \text { Draws }+0 \times \text { Losses }
$$

```
df$total_points <- 3 * df$wins + df$draws
head(df[, c("team", "wins", "draws", "losses", "total_points")])
```

	team wins draws	losses	total_points		
1	AZ	20	7	7	67
2	Ajax	20	9	5	69
3	Excelsior	9	5	20	32
4	FC Emmen	6	10	18	28
5	FC Groningen	4	6	24	18
6	FC Twente	18	10	6	64

Dataframes: Creating Variables - Team Ranking

```
df <- df[order(df$total_points, df$goal_diff, decreasing = TRUE), ]
df$ranking <- 1:nrow(df)
head(df[, c("team", "total_points", "goal_diff", "ranking")])
```

team total_points goal_diff ranking

9	Feyenoord	82	51	1
13	PSV	75	49	2
2	Ajax	69	48	3
1	AZ	67	33	4
6	FC Twente	64	39	5
16 Sparta Rotterdam	59	23	6	

Dataframes: Creating Variables - Relegation Status

```
df$relegation_status <- ""
```

df\$relegation_status[df\$ranking < 16] <- "No relegation"
df\$relegation_status[df\$ranking == 16] <- "Relegation playoffs"
df\$relegation_status[df\$ranking \%in\% 17:18] <- "Automatic relegation
df[, c("team", "ranking", "relegation_status")]
team ranking relegation_status

9	Feyenoord	1	No relegation
13	PSV	2	No relegation
2	Ajax	3	No relegation
1	AZ	4	No relegation
6	FC Twente	5	No relegation
16	Sparta Rotterdam	6	No relegation
7	FC Utrecht	7	No relegation
18	sC Heerenveen	8	No relegation
14	RKC Waalwijk	9	No relegation
17	Vitesse	10	No relegation
11	Go Ahead Eagles	11	No relegation
12	NEC	12	No relegation
10	Fortuna Sittard	13	No relegation
8	FC Volendam	14	No relegation
3	Excelsior	15	No relegation
4	FC Emmen	16	Relegation playoffs
15	SC Cambuur	17	Automatic relegation
5	FC Groningen	18 Automatic relegation	

The \%in\% Operator

- When we write a \%in\% b we are checking for each element in a if there is a matching element somewhere in b .
$a<-1: 6$
$b<-c(3,5,7)$
a \%in\% b
[1] FALSE FALSE TRUE FALSE TRUE FALSE
An equivalent but longer way of doing the same thing would be:
$\mathrm{a}==\mathrm{b}[1]|\mathrm{a}==\mathrm{b}[2]| \mathrm{a}==\mathrm{b}[3]$
[1] FALSE FALSE TRUE FALSE TRUE FALSE

Dataframes: Summarizing a Dataframe

The summary () command gives the summary statistics of all variables in df :
summary(df[, c("team", "wins", "draws", "losses")])

eam	wins	draws	losses
Length:18	Min. : 4.00	Min. : 4.000	Min. : 2.00
Class :character	1st Qu.: 9.25	1st Qu.: 6.000	1st Qu.: 7.50
Mode :character	Median :10.50	Median : 8.000	Median :13.00
	Mean :12.94	Mean : 8.111	Mean : 12.94
	3rd Qu.:17.75	3rd Qu.:10.000	3rd Qu.:18.00
	Max. :25.00	Max. : 15.000	Max. $: 25.00$

Dataframes: Peaking at your data

- We use head (df, $n=4$) to see the first 4 rows of df. head (df) on its own shows 6 rows by default.
- We use tail(df, $n=2$) to see the last 2 rows of df.

```
nrow(df) # see the number of rows in df
```

[1] 18
ncol(df) \# see the number of columns in df
[1] 10
dim(df) \# see both the number of rows and number of columns in df
[1] 1810

Dataframes: See all variable names

- names (df) shows the variable names of all variables in $d f$.

```
names(df)
```

[1] "team"
[4] "losses"
[7] "goal_diff"
[10] "relegation_status"
"wins"
"goals_for"
"total_points"
"draws"
"goals_against"
"ranking"

- Later we will learn how to use this command to change the names of variables in df.

Data Cleaning

Very often when we have a spreadsheet, we need to do some "cleaning" before we can work with it in R.

This can happen when:

- The data don't start at the top of the file because the first few rows contain some other information.
- The dates are not formatted correctly.
- Numbers are interpreted as characters.
- The data contain extra columns that we don't want.
- There are rows with missing data that we want to omit.
- The variable names are not what we want them to be.

ASML Stock Price Data

We will learn how to clean data with the asml-trades.csv data.
The variable names are:

- Date: The date the data from that row are from.
- Open: The opening price of the stock on that day.
- High: The highest price the stock traded at on that day.
- Low: The lowest price the stock traded at on that day.
- Last: The price of the last-traded stock at on that day.
- Close: The closing price of the stock on that day.
- Number. of. Shares: The number of shares traded that day.
- Number. of.Trades: The number of trades made that day.

Skipping Rows

If the data don't begin at the top of a file, you can tell R to ignore the empty rows with the skip option:

```
df <- read.csv("asml-trades.csv", skip = 3)
summary(df)
```

Date
Length:521
Class :character Mode :character

Last
Min.
:397.4
Qu.:535.9
Median :589.4 Median :589.4
Mean :588.4 Mean :588.4
3rd Qu.:644.0 3rd Qu.: 644.0
Max. :770.5 Max. :770.5
NA's $: 6 \quad$ NA's :6
Print.table
Mode:logical
NA's:521

Formatting Dates

The date variable was read in as a character instead of a date.

```
head(df$Date, n = 3)
```

```
[1] "31/8/2021" "1/9/2021" "2/9/2021"
```

The dates are in the format "dd/mm/yyyy". We can convert these to dates using the as.Date() function, telling R the format the dates are in:

```
df$Date <- as.Date(df$Date, format = "%d/%m/%Y")
summary(df$Date)
```


Formatting Dates: More Examples

```
as.Date("12/31/2023", format = "%m/%d/%Y")
```

[1] "2023-12-31"
as.Date("31-12-2023", format = "\%d-\%m-\%Y")
[1] "2023-12-31"
as.Date("31/12/23", format = "\%d/\%m/\%y")
[1] "2023-12-31"
as.Date("31 Dec 2023", format = "\%d \%b \%Y")
[1] "2023-12-31"
as.Date("31 December 2023", format = "\%d \%B \%Y")
[1] "2023-12-31"

Converting Characters to Numbers

- Although most values are numbers, there are some elements with "None" in the variables Number.of. Shares and Number . of.Trades.
- These character elements force the entire variable to be character, because all elements in a vector must have the same type.
- If we convert the character elements to NA (missing values), we can convert the variable to a numeric vector:
df\$Number.of.Shares[df\$Number.of.Shares == "None"] <- NA df\$Number.of.Shares <- as.numeric(df\$Number.of.Shares)
- We could skip the step of converting character elements to NA, but then R would warn us: NAs introduced by coercion.

Deleting Variables

We can delete variables by assigning NULL to that variable.

```
df$Print.table <- NULL
```

Alternatively we can drop variables using the column index of the variables we want to drop. We can drop the 9th variable (Print.table) with:

```
df <- df[, -9]
```


Dropping Rows with Missing Data

- For all variables apart from the date we having missing data on 6 rows. Let's take a look at which dates these are:

```
df$Date[is.na(df$0pen)]
```

[1] "2022-04-15" "2022-04-18" "2022-12-26" "2023-04-07" "2023-04-10" [6] "2023-05-01"

- These are dates around Easter and Christmas when the stock market is closed.
- We can drop rows with any missing variables with the na. omit() function.

```
nrow(df)
[1] 521
df <- na.omit(df)
nrow(df)
```


Renaming Variables

We can change a variable name using its column index as follows:
names(df)[7] <- "num_shares"

We can change a variable name using its current name as follows:
names(df)[names(df) == "Number.of.Trades"] <- "num_trades"

We can change multiple variable names at once with:
names(df)[2:5] <- c("open", "high", "low", "last")

Renaming Variables: Converting to Lower Case

We can convert characters to lower case with the tolower() function:

```
test <- c("hello!", "HELLO!", "Hello!", "HeLlO!")
tolower(test)
```

[1] "hello!" "hello!" "hello!" "hello!"

We can convert all variable names to lower case with:

```
names(df) <- tolower(names(df))
names(df)
```

$[1] ~ " d a t e " ~$	"open"	"high"	"low"
[6] "close"	"num_shares" "num_trades"		

Introduction to Plotting

- We will now learn how to plot data with R.
- We will learn how to make:
- Histograms: these display the distribution of a numeric variable.
- Bar charts: these display frequencies of values for numeric or categorical data.
- Scatter plots: these display the relationship between two numeric variables.
- There are two ways to make these plots:
(The "base R" approach (using built-in plotting functions in R) These are quick and easy to make, but don't look very nice.
(2) The "ggplot" approach (using the ggplot2 package).

These require more code, but are prettier and more customizable.

The Palmer Penguins Dataset

- We will use this famous dataset to demonstrate plotting.
- It contains the weight, gender, flipper length, and bill length and depth for 3 types of penguins: the adelie, the chinstrap and gentoo.

We can load the dataset with:

```
install.packages("palmerpenguins")
```

library(palmerpenguins)

Summarizing the Data

summary(penguins)

species	island	bill_length_mm	l_depth_mm
Adelie :152 B	Biscoe :168	Min. $\quad 32.10$	Min. $\quad 13.10$
Chinstrap: 68 D	Dream : 124	1st Qu.:39.23	1st Qu.:15.60
Gentoo :124 T	Torgersen: 52	Median :44.45	Median :17.30
		Mean : 43.92	Mean :17.15
		3rd Qu.:48.50	3rd Qu.:18.70
		Max. : 59.60	Max. $: 21.50$
		NA's :2	NA's :2
flipper_length_mm	m body_mass_g	sex	year
Min. :172.0	Min. :2700	female:165	Min. :2007
1st Qu.:190.0	1st Qu.:3550	male :168	1st Qu.:2007
Median :197.0	Median :4050	NA's : 11	Median :2008
Mean :200.9	Mean : 4202		Mean :2008
3rd Qu.:213.0	3rd Qu.:4750		3rd Qu.:2009
Max. $: 231.0$	Max. :6300		Max. :2009
NA's :2	NA's :2		

Histograms in Base R

hist(penguins\$body_mass_g)

Histogram of penguins\$body_mass_g

Bar Plots in Base R

The table() function applied to a vector shows the number of times each value appears.

```
table(penguins$species)
```

Adelie Chinstrap	Gentoo	
152	68	124

We can use a bar plot to visualize these relative frequencies.

Bar Plots in Base R

barplot(table(penguins\$species))

Adelie

Chinstrap

Gentoo

Scatter Plots in Base R

plot(penguins\$bill_length_mm, penguins\$flipper_length_mm)

penguins\$flipper_length_mm

penguins\$bill_length_mm

ggplot: The Grammar of Graphics

- Although it's possible to customize the plots from base R, we will instead learn how to produce nicer plots using the ggplot2 package.
- The "gs" in ggplot stands for "Grammar of Graphics", which is a scheme to layer elements in a plot.
- With the ggplot2 package, we create plots by adding layers.
- Install and load the ggplot2 package:

```
install.packages("ggplot2")
library(ggplot2)
```


Basic Histogram:

```
ggplot(penguins, aes(body_mass_g)) +
    geom_histogram()
```


Customizing Histograms

We can customize this with options and by adding layers:

- Choosing the number of bins.
- Changing the color of the bins.
- Specifying the axis labels.
- Changing the plot theme (theme_minimal() for removing the background colors).

```
ggplot(penguins, aes(body_mass_g)) +
    geom_histogram(bins = 15, fill = "navy") +
    xlab("Penguin weight (grams)") +
    ylab("Count") +
    theme_minimal()
```

(Output on the next slide)

Customizing Histograms

Basic Bar Plot

```
ggplot(penguins, aes(species)) +
    geom_bar()
```


Cross-Tabulation

- We can also create a bar plot with a cross-tabulation.
- When we put 2 variables x and y in the table() function with table (x, y), it shows us how often each combination of the values in x and y appear together in the data:

```
table(penguins$species, penguins$island)
```

	Biscoe	Dream	Torgersen
Adelie	44	56	52
Chinstrap	0	68	0
Gentoo	124	0	0

- Adelie penguins appear on all 3 islands.
- Chinstrap penguins appear only on Dream island.
- Gentoo penguins appear only on Biscoe island.

Basic Bar Plot with Cross-Tabulation

```
ggplot(penguins, aes(species, fill = island)) +
    geom_bar()
```


Customizing Bar Plots

- We can change the name of the legend and the "fill" colors using the scale_fill_discrete() option.
- We can also specify colors with their hexidecimal format instead of color names.
- We can find the hexidecimal format of a color using any color picker tool.

```
ggplot(penguins, aes(species, fill = island)) +
    geom_bar(color = "black") +
    xlab("Penguin species") +
    ylab("Count") +
    scale_fill_discrete(name = "Island",
    type = c("#0B0405", "#357BA2", "#DEF5E5")) +
    theme_minimal()
```

(Output on the next slide)

Customizing Bar Plots

Basic Scatter Plots

```
ggplot(penguins, aes(bill_length_mm, flipper_length_mm)) +
    geom_point()
```


Different Colors for Different Categories

Customizing Scatter Plots

```
ggplot(penguins, aes(bill_length_mm, flipper_length_mm, color = species))
    geom_point() +
    scale_color_discrete(name = "Species") +
    xlab("Bill length (in mm)") +
    ylab("Flipper length (in mm)") +
    theme_minimal()
```

(Output on the next slide)

Customizing Scatter Plots

Making your own R Functions

- It's very easy to create your own R functions.
- Consider the quadratic function:

$$
f(x)=-8-2 x+x^{2}
$$

- We can create an R function, which we call $f($), to calculate the output of this function as follows:

```
f <- function(x) {
    y<- -8 - 2 * x + x^2
    return(y)
}
```


Making your own R Functions

- We can then use this custom function like we would any other R function.
- The function evaluated at $x=2$ should equal:

$$
f(2)=-8-2 \times(2)+(2)^{2}=-8-4+4=-8
$$

- We can check that our custom function gets the same answer:
[1] -8
- We can also pass vectors into our custom function:

```
f(c(2, 3, 4))
[1] -8 -5 0
```


Plotting Functions with ggplot.

- We can also plot custom functions like this with ggplot.
- We first choose a range of values of x for which we want to plot the function.
- We then create a sequence of values of x in this range.
- We then evaluate the function at each of these x values to get y.
- We then put these x and y values in a data. frame and plot it with ggplot.

```
library(ggplot2)
x <- seq(from = -4, to = 6, length.out = 200)
y<- f(x)
df <- data.frame(x, y)
ggplot(df, aes(x, y)) + geom_line()
```

- Sometimes we don't know what range of x to choose. In this case it's good to pick some values, make the plot, and then adjust the values and make the plot again.

Plotting Functions with ggplot.

Univariate Unconstrained Optimization

- When we plotted the function $f(x)=-8-2 x+x^{2}$, we saw that it achieved a minimum at $x=1$.
- We could solve for the minimum analytically by setting the first derivative of the function to zero:

$$
\frac{d f(x)}{d x}=-2+2 x=0 \quad \Rightarrow \quad x=1
$$

- We can also use R to find the minimum of the function using the optimize() function.

The optimize() Function

- We need to specify an interval (lower bound and upper bound) to search for the extreme point.
- We also need to specify if we want a maximum or a minimum using the maximum option.
optimize(f, interval $=c(-100,100)$, maximum $=$ FALSE $)$
\$minimum
[1] 1
\$objective
[1] -9
- The optimize() function finds a minimum at 1 , and the function takes a value of -9 at the minimum, i.e. $f(1)=-9$
- If we instead wanted to find the maximum of a function, we would specify maximum = TRUE.

The optimize() Function

- The output of the optimize() function is a list.
- If we assign the output to an object called f_min, we can extract the minimum with f_min\$minimum.
- The \$ extraction operator works for lists just like with dataframes.
- We can similarly get the value of the function at the minimum with f_min\$objective.
f_min <- optimize(f, interval = c(-100, 100), maximum = FALSE)
f_min\$minimum
[1] 1
f_min\$objective
[1] -9

Conditional Statements ("|f-else")

- Very often we to perform different actions depending on whether something is true or not.
- For this we use if-else statements, which also called conditional statements.
- The absolute value function is a simple example of this:

$$
|x|= \begin{cases}-x & x<0 \\ x & \text { otherwise }\end{cases}
$$

- We ask, "is $x<0$?". If yes, then return $-x$. If not, then return x.
- Of course, we can always use the abs() function in R to calculate the absolute value. But let's create our own function doing exactly this.

Custom absolute value function

```
my_abs <- function(x) {
    if (x < 0) {
        return(-x)
    } else {
    return(x)
    }
}
my_abs(-2)
```

[1] 2
my_abs(3)
[1] 3

If-Else Statements for Vectors

- The previous function we wrote only works with scalars (vectors of length 1).
- If we would try to do my_abs (c(-2, 3)), we would get an error.
- To do if-else statements with vectors, we can use the ifelse() function.
- The ifelse() function takes 3 arguments:
- A logical vector (such as testing the condition $x<0$).
(2) What to return if TRUE (i.e. if $x<0$).
(3) What to return if FALSE (i.e. if $x \geq 0$).

```
x <- -5:5
x
    [1] -5 -4 - -3 -2 - -1 0
ifelse(x < 0, -x, x)
    [1] 5 4 3 2 1 0 1 2 3 4 5
```


"If-Else If-Else" Statements

- Sometimes there can be more than 2 cases to test.
- For example, consider the following function which gives the "sign" in front of a number:

$$
\operatorname{sgn}(x)= \begin{cases}-1 & \text { if } x<0 \\ 0 & \text { if } x=0 \\ +1 & \text { otherwise }\end{cases}
$$

- For example, $\operatorname{sgn}(-2)=-1, \operatorname{sgn}(0)=0$, and $\operatorname{sgn}(3)=1$.
- We can code a function in R to do this by nesting if-else statements.

```
"If-Else If-Else" Statements
sgn <- function(x) {
    if (x < 0) {
        return(-1)
    } else if (x == 0) {
        return(0)
    } else {
    return(+1)
    }
}
sgn(-2)
[1] -1
sgn(3)
[1] 1
```


"If-Else If-Else" Statements with Vectors

We can also nest the ifelse() function inside of itself to get the sign of a vector of numbers:

```
x <- -3:3
```

X
[1] -3 -2 $-1 \begin{array}{lllll} & 0 & 1 & 2 & 3\end{array}$
ifelse(x < 0, -1, ifelse $(x==0,0,1))$
[1] $-1 \begin{array}{lllllll} & -1 & -1 & 0 & 1 & 1 & 1\end{array}$

Merging

- Merging (or joining) is the R equivalent of the VLOOKUP function in Excel.
- When two datasets have a common ID variable linking them together, we can merge them.
- For example:
- One dataset with total sales on each day, and another dataset with the temperature on each day. We can link the datasets using the date.
- One dataset with the total sales in each municipality over a year, and another with the demographic characteristics of each municipality. We can link the datasets using the municipality name.

Merging Example

- We will show a merging example using 2 datasets:
(1) Average daily petrol prices from 2014-2022.
(2) Brent crude oil spot prices from 1987-2022 (excludes weekends and holidays).
- We will merge the datasets by date.

Data Cleaning: Average Daily Petrol Price Data

```
df1 <- read.csv("avg_daily_petrol_prices.csv")
head(df1$date)
```

[1] "2014-06-08" "2014-06-09" "2014-06-10" "2014-06-11" "2014-06-12"
[6] "2014-06-13"
df1\$date <- as.Date(df1\$date, format = "\%Y-\%m-\%d") summary (df1)

date	e5	e10	diesel
Min. :2014-06-08	Min. :1.159	Min. 11.130	Min. :0.9558
1st Qu.:2016-07-03	1st Qu.:1.340	1st Qu.:1.318	1st Qu.:1.1322
Median :2018-07-29	Median :1.402	Median :1.379	Median :1.2353
Mean :2018-07-29	Mean :1.456	Mean :1.423	Mean :1.2811
3rd Qu.:2020-08-23	3rd Qu.:1.522	3rd Qu.:1.479	3rd Qu.:1.3217
Max. :2022-09-18	Max. $: 2.261$	Max. $: 2.203$	Max. $: 2.3343$

Data Cleaning: Brent Crude Oil Spot Price Data

```
df2 <- read.csv("Europe_Brent_Spot_Price_FOB.csv", skip = 4)
head(df2$Day)
```

[1] "09/19/2022" "09/16/2022" "09/15/2022" "09/14/2022" "09/13/2022"
[6] "09/12/2022"
df2\$Day <- as.Date(df2\$Day, format = "\%m/\%d/\%Y")
names(df2) <- c("date", "crude_oil")
summary (df2)

date	crude_oil
Min. : 1987-05-20	Min. : 9.10
1st Qu.:1996-03-06	1st Qu.: 19.03
Median :2005-01-04	Median : 38.08
Mean :2005-01-12	Mean : 48.22
3rd Qu.:2013-11-24	3rd Qu.: 69.67

The merge() Command:

```
df <- merge(df1, df2, by = "date")
summary(df)
```

date
Min. :2014-06-09
1st Qu.: 2016-07-04
Median :2018-07-26
Mean :2018-07-27
3rd Qu.:2020-08-19
Max. :2022-09-16 crude_oil
Min. : 9.12
1st Qu.: 48.54
Median : 61.18
Mean : 63.47
3rd Qu.: 72.97
Max. : 133.18
e5
Min. :1.159
Min.
e10
diesel
Min. :0.9558
1st Qu.:1.339 1st Qu.:1.318 1st Qu.:1.1302
Median :1.402 Median :1.379 Median :1.2345
Mean :1.455 Mean :1.422 Mean :1.2797
3rd Qu.:1.521 3rd Qu.:1.478 3rd Qu.:1.3216
Max. :2.261 Max. :2.203 Max. :2.3343

Merging: Dropped Observations

- The merged dataset only includes observations where there is a match.
- Observations where there is no corresponding match are dropped:

```
nrow(df1)
[1] 3025
nrow(df2)
[1] 8970
nrow(df)
[1] 2107
```

- To avoid dropping rows, we can use the all. $x=$ TRUE and/or all. $y=$ TRUE options.

Merging with all. $\mathrm{x}=$ TRUE

- all. $x=$ TRUE: Keeps all observations in the 1st dataset, but only merges data from the 2nd dataset when there is a match. When there is no match, variables in the 2nd dataset get assigned NA values.
- all.y = TRUE: Keeps all observations in the 2nd dataset, but only merges data from the 1st dataset when there is a match. When there is no match, variables in the 1st dataset get assigned NA values.
- all = TRUE: This keeps all observations from both datasets, and variables get assigned NA values when there is no match. This is equivalent to setting both all. $x=$ TRUE and all.y $=$ TRUE.

```
Merging with all.x = TRUE
df <- merge(df1, df2, by = "date", all.x = TRUE)
summary(df)
```

date
Min. :2014-06-08
1st Qu.:2016-07-03
Median :2018-07-29
Mean :2018-07-29
3rd Qu.:2020-08-23
Max. :2022-09-18
crude_oil
Min. : 9.12
1st Qu.: 48.54
Median : 61.18
Mean : 63.47
3rd Qu.: 72.97
Max. : 133.18
NA's :918
e5
Min. :1.159
1st Qu.:1.340
Median :1.402
Mean :1.456
3rd Qu.:1.522
Max. :2.261
e10
Min. :1.130 Min. :0.9558
1st Qu.:1.318 1st Qu.:1.1322
Median :1.379 Median :1.2353
Mean :1.423 Mean :1.2811
3rd Qu.:1.479 3rd Qu.:1.3217
Max. :2.203 Max. :2.3343

Further Remarks on Merging

- If merging on multiple variables, use by = c("var1", "var2").
- If merging variables differ in df1 and df2, use by. x and by. y instead of by. For example:

```
df <- merge(df1, df2, by.x = c("market_area", "date"),
    by.y = c("market", "date"))
```

- To avoid sorting the data, use option sort = FALSE.

Reshaping

Suppose you have a dataset structured like this (long format):

	id	variable	value
1	1	x	3
2	1	y	5
3	2	x	4
4	2	y	8
5	3	x	3
6	3	y	1

And you wanted to reshape it to look like this (wide format):

	id	x	y
1	1	3	5
2	2	4	8
3	3	3	1

Reshaping

- Base R has a function that can do this called reshape(), but it's not very easy to use.
- The package reshape2 contains functions to make it easy to go from long to wide format and vice-versa:
- dcast(df, id ~ variable): long to wide format.
- melt(df, idvars = "id"): wide to long format.

Reshaping: Long to Wide

```
long <- data.frame(
    id = rep(1:3, each = 2),
    variable = rep(c("x", "y"), times = 3),
    value =c(3, 5, 4, 8, 3, 1)
)
library(reshape2)
wide <- dcast(long, id ~ variable)
wide
```

	id	x	y
1	1	3	5
2	2	4	8
3	3	3	1

Reshaping: Wide to Long

```
melt(wide, id.vars = "id")
```

	id	variable	value
1	1	x	3
2	2	x	4
3	3	x	3
4	1	y	5
5	2	y	8
6	3	y	1

Overlay Line Plots with ggplot

To overlay line plots with ggplot we need our data in long format.

```
df <- read.csv("avg_daily_petrol_prices.csv")
df$date <- as.Date(df$date, format = "%Y-%m-%d")
head(df, n = 2)
```


date variable value
1 2014-06-08 e5 1.551987
2 2014-06-09 e5 1.576623

Overlay Line Plots with ggplot

```
ggplot(df2, aes(date, value, color = variable)) + geom_line()
```


Customizing the Plot

```
levels(df2$variable) <- c("E5", "E10", "Diesel")
library(ggplot2)
ggplot(df2, aes(date, value, color = variable)) +
    geom_line() +
    xlab("") +
    ylab("Average Daily\nPetrol Price\n(in Euro)") +
    scale_color_discrete(name = "Petrol Type:") +
    theme_minimal() +
    theme(legend.direction = "horizontal",
        legend.position = "bottom")
```


(Output on next slide)

Customizing the Plot

Petrol Type: - E5 - E10 - Diesel

Aggregating by Group

- If we want to get the sum or average by group we can use the aggregate() function.
- The aggregate() function is a bit like the R version of pivot tables in Excel.
- If we want to get the average of x by group g in the dataframe $d f$, we use:
aggregate(x ~ g, FUN = mean, data = df)
- We'll show this using the petrol price data as an example.

Average Price of E5 Petrol by Year

```
df <- read.csv("avg_daily_petrol_prices.csv")
df$date <- as.Date(df$date, format = "%Y-%m-%d")
library(lubridate)
df$year <- year(df$date)
aggregate(e5 ~ year, FUN = mean, data = df)
```

 year e5
 120141.519195
220151.393170
320161.302767
420171.368414
520181.454098
620191.430592
720201.288080
820211.579992
920221.933512

Maximum Price of E5 by Year

```
aggregate(e5 ~ year, FUN = max, data = df)
    year e5
1 2014 1.605252
2 2015 1.519229
3 2016 1.395620
4 2017 1.414228
5 2018 1.573760
6 2019 1.555623
7 2020 1.461060
8 2021 1.761985
9 2022 2.260581
```


Average Price of E5 and E10 by Year

aggregate(cbind(e5, e10) ~ year, FUN = mean, data $=d f$)

	year	e5	e10
1	2014	1.519195	1.461632
2	2015	1.393170	1.373425
3	2016	1.302767	1.282375
4	2017	1.368414	1.345430
5	2018	1.454098	1.430955
6	2019	1.430592	1.408177
7	2020	1.288080	1.253603
8	2021	1.579992	1.522833
9	2022	1.933512	1.875897

Average Price of All Variables by Year

aggregate(. ~ year, FUN = mean, data = df)

	year	date	e 5	e 10	diesel
1	2014	16332.0	1.519195	1.461632	1.334612
2	2015	16618.0	1.393170	1.373425	1.173013
3	2016	16983.5	1.302767	1.282375	1.081282
4	2017	17349.0	1.368414	1.345430	1.161306
5	2018	17714.0	1.454098	1.430955	1.287264
6	2019	18079.0	1.430592	1.408177	1.265341
7	2020	18444.5	1.288080	1.253603	1.111068
8	2021	18810.0	1.579992	1.522833	1.387114
9	2022	19123.0	1.933512	1.875897	1.941386

