
Programming and Quantitative Skills: R

Christoph Walsh

2023

Christoph Walsh Programming and Quantitative Skills: R 2023 1 / 115

What is R and RStudio?

R is a programming language which specializes in statistical computing and
graphics.

▶ A programming language is a way to instruct a computer to perform operations via
written text.

▶ When programming, we need to be very exact. Otherwise the computer will throw and
error or do something we didn’t intend it to do!

RStudio is a desktop application where you can write R code, execute R programs,
and view plots created by R.

Christoph Walsh Programming and Quantitative Skills: R 2023 2 / 115

Why Learn R?

R has many benefits over some alternatives:

R is free and open source.
Large active community creating packages and providing support.
Easier to learn than some alternatives.
Availability of RStudio for free.
R is extremely versatile. For example, these slides were made in RStudio!

Learning R also doesn’t end after the exam for this course. In the 2nd year you will take
Statistics 2 where you will learn how to estimate and use various statistical models in R.

Christoph Walsh Programming and Quantitative Skills: R 2023 3 / 115

Installing R

To download and install R, go to https://mirror.lyrahosting.com/CRAN.
To download and install RStudio, go to
https://posit.co/download/rstudio-desktop/.

Christoph Walsh Programming and Quantitative Skills: R 2023 4 / 115

https://mirror.lyrahosting.com/CRAN
https://posit.co/download/rstudio-desktop/

The R Console

We can perform calculations in the Console tab in RStudio.
At the most basic level, we can use it as a simple calculator:

▶ Add: 2 + 3
▶ Subtract: 5 - 3
▶ Multiply: 2 * 3
▶ Divide: 3 / 2
▶ Exponentiation: 2^3
▶ Combining operations: (2 + 4) / (4 * 2)

Christoph Walsh Programming and Quantitative Skills: R 2023 5 / 115

R Functions

Just like Excel, R has functions.
These functions work in a very similar way:

▶ Functions have names, and we provide arguments to functions inside parentheses.
In the next few slides we will see some examples of mathematical functions and
how to evaluate them in R.

Christoph Walsh Programming and Quantitative Skills: R 2023 6 / 115

Absolute Value
The absolute value function turns negative numbers into positive ones and has no
effect on zero or positive numbers.

|𝑥| = {𝑥 if 𝑥 ≥ 0
−𝑥 otherwise

0.0

0.5

1.0

1.5

2.0

−2 −1 0 1 2
x

|x
|

Christoph Walsh Programming and Quantitative Skills: R 2023 7 / 115

Absolute Value in R

The absolute value function in R is called abs. We can use it as follows:

abs(-2)
[1] 2

abs(3)
[1] 3
We can see help about a function using help(abs) or ?abs

Christoph Walsh Programming and Quantitative Skills: R 2023 8 / 115

Principal Square Roots
The square root of a number is the 𝑦 that solves 𝑦2 = 𝑥.
If 𝑥 = 4, both 𝑦 = −2 and 𝑦 = 2 solve 𝑦2 = 𝑥.
The principal square root is the positive 𝑦 solving this.

0

1

2

3

0.0 2.5 5.0 7.5 10.0
x

sq
rt

(x
)

Christoph Walsh Programming and Quantitative Skills: R 2023 9 / 115

Principal Square Roots in R

We can use the sqrt() function or take to the power of 1
2 to take the square root.

sqrt(9)

[1] 3

9^(1/2)
[1] 3
The cubed root is the 𝑦 that solves 𝑦 = 𝑥3. We can calculate this in R by taking the
power of 1

3 .

8^(1/3)
[1] 2

Christoph Walsh Programming and Quantitative Skills: R 2023 10 / 115

The Exponential Function
The exponential function is a very common function in statistics:

𝑒𝑥 = lim
𝑛→∞

(1 + 𝑥
𝑛)

𝑛

Note: you don’t need to know this function for the exam.

0

2

4

6

−2 −1 0 1 2
x

ex
p(

x)

Christoph Walsh Programming and Quantitative Skills: R 2023 11 / 115

The Exponential Function in R

In R we use the exp() function to calculate the exponential of a number:

exp(0)

[1] 1

exp(1)

[1] 2.718282

Christoph Walsh Programming and Quantitative Skills: R 2023 12 / 115

The Logarithm

Another common mathematical function is the logarithm, which is like the reverse
of exponentiation.
The log of a number 𝑥 to a base 𝑏, denoted log𝑏 (𝑥), is the number of times we
need to multiply 𝑏 by itself to get 𝑥.
For example, log10 (100) = 2, because 10 × 10 = 100. We need to multiply the
base 𝑏 = 10 by itself twice to get to 𝑥 = 100.

Christoph Walsh Programming and Quantitative Skills: R 2023 13 / 115

The Natural Logarithm
A special logarithm is the natural logarithm, log𝑒(𝑥), which is the logarithm to the
base exp(1) = 𝑒1 ≈ 2.7183. This is also written as ln(𝑥).

−2.5

0.0

2.5

0.0 2.5 5.0 7.5 10.0
x

ln
(x

)

Christoph Walsh Programming and Quantitative Skills: R 2023 14 / 115

The Logarithm in R

In R we use the log() function to calculate the natural logarithm:

log(1)

[1] 0
We can calculate the logarithm of a number to a different base using the base
argument. For example, for log10 (100):
log(100, base = 10)

[1] 2

Christoph Walsh Programming and Quantitative Skills: R 2023 15 / 115

The Assignment Operator: <-

We can store objects using the assignment operator, <-.
For example:

a <- 2
b <- 3
𝑎 and 𝑏 are then visible in the Environment tab in RStudio.
We can then use 𝑎 and 𝑏 for calculations:
a + b
[1] 5

Christoph Walsh Programming and Quantitative Skills: R 2023 16 / 115

Common Object Types: Numerical, Logical and Character

Numerical vectors (list of numbers):

a <- c(1, 3, 7, 2)

Logical vectors (list of Yes/No responses):

a <- c(TRUE, FALSE, TRUE, TRUE)

Character vectors (list of letters/words):

a <- c("programming", "and", "quantitative", "skills")

Christoph Walsh Programming and Quantitative Skills: R 2023 17 / 115

Common Object Types: Factors

Categorical variables are stored in R as “factors”.
For example, imagine a survey asking how long it took for people to get to campus
(in minutes) and their travel mode (one of “cycle”, “train”, or “walk”).
You could store these variables as a numerical and a character variable:

time <- c(25, 20, 15, 10, 17, 30)
travel_mode <- c("train", "train", "walk",

"cycle", "walk", "train")

But if we tell R that this travel mode variable is a categorical variable, it will be
useful for operations that we will learn later. We can convert this to a factor using
the factor function:

travel_mode <- factor(travel_mode)

Christoph Walsh Programming and Quantitative Skills: R 2023 18 / 115

Common Object Types: Data Frames and Lists
A data.frame collects vectors of the same length into a single dataset.
We can convert the time and travel_mode variables into a data.frame as
follows:

df <- data.frame(travel_mode, time)
We can also “View” it in RStudio by clicking on it in the Environment tab.
A data.frame is actually a special type of list:

my_list <- list(x = 1:3, y = TRUE, z = c("a", "b"))

While vectors must have all elements of the same type
(numeric/logical/character/factor), lists can have elements of any type and any
length.
Dataframes can have columns of different types, but all columns must have the
same length.

Christoph Walsh Programming and Quantitative Skills: R 2023 19 / 115

Indexing Vectors with Numbers

The elements of a vector like:

a <- c(1, 2, 4, 3, 2)

are indexed 1-5.
We can extract elements from this vector using these indices:

a[3]
[1] 4

a[c(1, 3, 4)]

[1] 1 4 3

Christoph Walsh Programming and Quantitative Skills: R 2023 20 / 115

Indexing Vectors with Logical Vectors

We can also index vectors using an equal-length logical vector, where we exract
only the elements that are TRUE:

a <- c(1, 2, 4, 3, 2)
a[c(TRUE, FALSE, TRUE, TRUE, FALSE)]

[1] 1 4 3

Christoph Walsh Programming and Quantitative Skills: R 2023 21 / 115

Sequences
We can create vectors that are sequences of numbers in different ways:

1:10

[1] 1 2 3 4 5 6 7 8 9 10

10:1

[1] 10 9 8 7 6 5 4 3 2 1

seq(from = 10, to = 100, by = 10)

[1] 10 20 30 40 50 60 70 80 90 100

seq(from = 0, to = 1, length.out = 5)

[1] 0.00 0.25 0.50 0.75 1.00
Christoph Walsh Programming and Quantitative Skills: R 2023 22 / 115

Repeating Numbers and Vectors
To save time typing, we can repeat numbers and vectors with the rep() function:

rep(1, times = 20)

[1] 1

rep(1:3, times = 4)

[1] 1 2 3 1 2 3 1 2 3 1 2 3

rep(1:3, each = 4)

[1] 1 1 1 1 2 2 2 2 3 3 3 3

Christoph Walsh Programming and Quantitative Skills: R 2023 23 / 115

Summary Statistics for Vectors
a <- 1:10
a

[1] 1 2 3 4 5 6 7 8 9 10

length(a)

[1] 10

min(a)

[1] 1

max(a)

[1] 10
Christoph Walsh Programming and Quantitative Skills: R 2023 24 / 115

Summary Statistics for Vectors
mean(a)

[1] 5.5

median(a)

[1] 5.5

sum(a)

[1] 55

summary(a)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 3.25 5.50 5.50 7.75 10.00

Christoph Walsh Programming and Quantitative Skills: R 2023 25 / 115

Tabulate a Vector

a <- c(1, 3, 2, 4, 4, 2, 4)
table(a)

a
1 2 3 4
1 2 1 3

Christoph Walsh Programming and Quantitative Skills: R 2023 26 / 115

Comparing Numerical Vectors
a <- 1:5
b <- 5:1
a

[1] 1 2 3 4 5

b

[1] 5 4 3 2 1

a < b

[1] TRUE TRUE FALSE FALSE FALSE

a <= b

[1] TRUE TRUE TRUE FALSE FALSE
Christoph Walsh Programming and Quantitative Skills: R 2023 27 / 115

Comparing Numerical Vectors
a == b

[1] FALSE FALSE TRUE FALSE FALSE

a != b

[1] TRUE TRUE FALSE TRUE TRUE

a >= b

[1] FALSE FALSE TRUE TRUE TRUE

a > b

[1] FALSE FALSE FALSE TRUE TRUE
Christoph Walsh Programming and Quantitative Skills: R 2023 28 / 115

Comparing Logical Vectors
a <- c(TRUE, TRUE, FALSE, FALSE)
b <- c(TRUE, FALSE, TRUE, FALSE)

We use & for logical AND, | for logical OR and ! for logical NOT.

a & b

[1] TRUE FALSE FALSE FALSE

a | b

[1] TRUE TRUE TRUE FALSE

!a

[1] FALSE FALSE TRUE TRUE
Christoph Walsh Programming and Quantitative Skills: R 2023 29 / 115

R Scripts

When working on a project, it’s often better to write all the commands you want to
run in an R script instead of directly into the console:

▶ It documents and saves your work.
▶ It makes your work shareable and reproduceable.
▶ You can edit earlier commands in a chain of commands.
▶ It’s easier to spot mistakes.

There are different ways of “running” an R script:
▶ Selecting all or a subset of lines and hitting “Run”.
▶ Sourcing “with echo” and “without echo”.

Christoph Walsh Programming and Quantitative Skills: R 2023 30 / 115

Commenting in R Scripts
When writing code it’s good practice to write “comments” to help others (and you!)
understand your code.
Anything written after a # symbol is ignored by the R console. So we precede all
comments with a #.

Set values of a and b:
a <- 2
b <- 3
print(a + b) # Compute the sum of a and b and print:

[1] 5

Commenting is also useful if you want to temporarily disable a certain part of your
script. You just need to put a # before the commands you want to disable.

▶ This is called “commenting out”.
▶ Select the lines you want to comment out, then go to Code → Comment/Uncomment
Lines.
Christoph Walsh Programming and Quantitative Skills: R 2023 31 / 115

CSV files

The most common way we read data into R is through CSV (comma-separated
values) files.
These are plain text files with a .csv extension.
We would store our travel mode survey data in a CSV file like this:

travel_mode,time
train,25
train,20
walk,15
cycle,10
walk,17
train,30

Christoph Walsh Programming and Quantitative Skills: R 2023 32 / 115

CSV files: Commas in data points

Each line needs to have the same number of commas.
If data points contain commas themselves (e.g. suppose a category was train,
cycle), we need to wrap the data points with quotes.
So often you will see CSV files where the text is wrapped in quotes:

"travel_mode","time"
"train",25
"train",20
"walk",15
"cycle",10
"walk",17
"train",30

Christoph Walsh Programming and Quantitative Skills: R 2023 33 / 115

CSV files: Comma decimal separators
In continental Europe, commas are used as decimal separators: “one and a half” is
written as 1,5.
Clearly this will cause problems with CSV files!
So sometimes you might see files with ; delimiting variables instead of ,.
An example of that would be:

"travel_mode";"time"
"train";25,0
"train";20,0
"walk";15,0
"cycle";10,0
"walk";17,0
"train";30,0

When this happens, we need to tell R that the file is using a ; separator.
In the exam, however, we’ll deal exclusively with more standard CSV files.

Christoph Walsh Programming and Quantitative Skills: R 2023 34 / 115

Reading CSV files into R

In order to read a CSV file into R, we need to tell R where the file is located on our
computer.
There are three different approaches to do this:

1 The absolute path method
2 The relative path method
3 The RStudio Projects method (my recommendation!)

For this we save the travel mode data in a file called test.csv.

Christoph Walsh Programming and Quantitative Skills: R 2023 35 / 115

Reading CSV files into R: The Absolute Path Method
This approach involves giving R the full path to the file.
On Windows, the full path of would look something like
C:\Users\username\Documents\test.csv.
However, the backslash has a special purpose in R so we can’t use this.
We need to use either forward slashes (“/”) or double-backslashes (“\”):

▶ C:/Users/username/Documents/test.csv
▶ C:\\Users\\username\\Documents\\test.csv

The fastest way to get the full path to a file is with the file.choose() command.
Run the command, navigate to the file, and then the full file path with appear in the
console. You can then copy this to your clipboard.
You can then paste this as an argument into the read.csv() command:

df <- read.csv("C:\\Users\\username\\Documents\\test.csv")

When we use this approach, it doesn’t matter what the current working directory of
the R process is.

Christoph Walsh Programming and Quantitative Skills: R 2023 36 / 115

Reading CSV files into R: The Relative Path Method
We can find out what the current working directory is with getwd().
To change it to the Documents folder, we can use the setwd() command.
When the R process is in the working directory with the data, we only need to
provide the name of the file in the read.csv() command.
The steps would then be:

setwd("C:\\Users\\username\\Documents\\")
df <- read.csv("test.csv")

Suppose the full path of the file was actually
"C:\\Users\\username\\Documents\\data\\test.csv"
We could then read in the data from the Documents folder by only giving the
relative path to the file, which is "data\\test.csv":

setwd("C:\\Users\\username\\Documents\\")
df <- read.csv("data\\test.csv")

Christoph Walsh Programming and Quantitative Skills: R 2023 37 / 115

Reading CSV files into R: The RStudio Projects Method

If you share your code with someone, they will have to edit these lines that read in
the data, or change the working directory. This is not ideal!
A better way to deal with file paths is by using the RStudio Project feature.
Suppose you saved your data in a folder called PQS on your computer.
To go File → New Project, choose “Existing Directory”, and navigate to the PQS
folder.
When you are in the PQS project, RStudio automatically changes the current
working directory to that folder. Then you don’t need to provide the full file path, or
use the setwd() command.
Therefore I recommend this approach over the previous methods.

Christoph Walsh Programming and Quantitative Skills: R 2023 38 / 115

R Packages: Installing a Package

Up to now, all the functions we have been using come by default with R.
▶ We call the default functionality “base R”.

But people have written packages that expand the functionality of R to do more
things.
For example, base R is not able to read in data from an Excel file.

▶ But there are several packages that can do this.
▶ We’ll learn how to do this using the readxl package.

To install a package, you can use the command:

install.packages("readxl")

Alternatively, you can install the package using Tools → Install Packages...
in RStudio.

Christoph Walsh Programming and Quantitative Skills: R 2023 39 / 115

R Packages: Loading and Using a Package
R doesn’t load up the functions of all the installed packages by default. We also
need to load a package after we install it.
We can do this with the library() command:

library(readxl)

If a package is not installed, the library function will return an error.
To read in a file called test.xlsx in the current working directory, we do:

df <- read_excel("test.xlsx")

The read_excel() function loads the data as a tibble, which is like a
data.frame but with a few extra features. We can force the data to be a plain
data.frame with:

df <- data.frame(read_excel("test.xlsx"))
Christoph Walsh Programming and Quantitative Skills: R 2023 40 / 115

Dataframes: Eredivisie Data
team wins draws losses goals_for goals_against

1 AZ 20 7 7 68 35
2 Ajax 20 9 5 86 38
3 Excelsior 9 5 20 32 71
4 FC Emmen 6 10 18 33 65
5 FC Groningen 4 6 24 31 75
6 FC Twente 18 10 6 66 27
7 FC Utrecht 15 9 10 55 50
8 FC Volendam 10 6 18 42 71
9 Feyenoord 25 7 2 81 30
10 Fortuna Sittard 10 6 18 39 62
11 Go Ahead Eagles 10 10 14 46 56
12 NEC 8 15 11 42 45
13 PSV 23 6 5 89 40
14 RKC Waalwijk 11 8 15 50 64
15 SC Cambuur 5 4 25 26 69
16 Sparta Rotterdam 17 8 9 60 37
17 Vitesse 10 10 14 45 50
18 sc Heerenveen 12 10 12 44 50

Christoph Walsh Programming and Quantitative Skills: R 2023 41 / 115

Dataframes: Indexing

We can get the 2nd row and 3rd column of df with df[2, 3].
We can the team name and number of wins variables for Ajax, Feyenoord and PSV
with df[c(2, 9, 13), c(1, 2)].
We can extract all variables for Ajax with df[2,].
We can extract all values for “goals for” with df[, 5].
We can also extract all values for a column with a variable name:

▶ df$goals_for.
▶ df[, "goals_for"].
▶ df[["goals_for"]].

We can extract several columns with:
▶ df[, c("team", "goals_for")]

To get the rows for all teams with at least 20 wins: df[df$wins >= 20,].

Christoph Walsh Programming and Quantitative Skills: R 2023 42 / 115

Dataframes: Creating Variables - Goal Difference

df$goal_diff <- df$goals_for - df$goals_against
head(df)

team wins draws losses goals_for goals_against goal_diff
1 AZ 20 7 7 68 35 33
2 Ajax 20 9 5 86 38 48
3 Excelsior 9 5 20 32 71 -39
4 FC Emmen 6 10 18 33 65 -32
5 FC Groningen 4 6 24 31 75 -44
6 FC Twente 18 10 6 66 27 39

Christoph Walsh Programming and Quantitative Skills: R 2023 43 / 115

Dataframes: Creating Variables - Total Points

Points = 3 × Wins + 1 × Draws + 0 × Losses

df$total_points <- 3 * df$wins + df$draws
head(df[, c("team", "wins", "draws", "losses", "total_points")])

team wins draws losses total_points
1 AZ 20 7 7 67
2 Ajax 20 9 5 69
3 Excelsior 9 5 20 32
4 FC Emmen 6 10 18 28
5 FC Groningen 4 6 24 18
6 FC Twente 18 10 6 64

Christoph Walsh Programming and Quantitative Skills: R 2023 44 / 115

Dataframes: Creating Variables - Team Ranking

df <- df[order(df$total_points, df$goal_diff, decreasing = TRUE),]
df$ranking <- 1:nrow(df)
head(df[, c("team", "total_points", "goal_diff", "ranking")])

team total_points goal_diff ranking
9 Feyenoord 82 51 1
13 PSV 75 49 2
2 Ajax 69 48 3
1 AZ 67 33 4
6 FC Twente 64 39 5
16 Sparta Rotterdam 59 23 6

Christoph Walsh Programming and Quantitative Skills: R 2023 45 / 115

Dataframes: Creating Variables - Relegation Status
df$relegation_status <- ""
df$relegation_status[df$ranking < 16] <- "No relegation"
df$relegation_status[df$ranking == 16] <- "Relegation playoffs"
df$relegation_status[df$ranking %in% 17:18] <- "Automatic relegation"
df[, c("team", "ranking", "relegation_status")]

team ranking relegation_status
9 Feyenoord 1 No relegation
13 PSV 2 No relegation
2 Ajax 3 No relegation
1 AZ 4 No relegation
6 FC Twente 5 No relegation
16 Sparta Rotterdam 6 No relegation
7 FC Utrecht 7 No relegation
18 sc Heerenveen 8 No relegation
14 RKC Waalwijk 9 No relegation
17 Vitesse 10 No relegation
11 Go Ahead Eagles 11 No relegation
12 NEC 12 No relegation
10 Fortuna Sittard 13 No relegation
8 FC Volendam 14 No relegation
3 Excelsior 15 No relegation
4 FC Emmen 16 Relegation playoffs
15 SC Cambuur 17 Automatic relegation
5 FC Groningen 18 Automatic relegation

Christoph Walsh Programming and Quantitative Skills: R 2023 46 / 115

The %in% Operator
When we write a %in% b we are checking for each element in a if there is a
matching element somewhere in b.

a <- 1:6
b <- c(3, 5, 7)
a %in% b

[1] FALSE FALSE TRUE FALSE TRUE FALSE

An equivalent but longer way of doing the same thing would be:

a == b[1] | a == b[2] | a == b[3]

[1] FALSE FALSE TRUE FALSE TRUE FALSE

Christoph Walsh Programming and Quantitative Skills: R 2023 47 / 115

Dataframes: Summarizing a Dataframe

The summary() command gives the summary statistics of all variables in df:

summary(df[, c("team", "wins", "draws", "losses")])

team wins draws losses
Length:18 Min. : 4.00 Min. : 4.000 Min. : 2.00
Class :character 1st Qu.: 9.25 1st Qu.: 6.000 1st Qu.: 7.50
Mode :character Median :10.50 Median : 8.000 Median :13.00

Mean :12.94 Mean : 8.111 Mean :12.94
3rd Qu.:17.75 3rd Qu.:10.000 3rd Qu.:18.00
Max. :25.00 Max. :15.000 Max. :25.00

Christoph Walsh Programming and Quantitative Skills: R 2023 48 / 115

Dataframes: Peaking at your data
We use head(df, n = 4) to see the first 4 rows of df. head(df) on its own
shows 6 rows by default.
We use tail(df, n = 2) to see the last 2 rows of df.

nrow(df) # see the number of rows in df

[1] 18

ncol(df) # see the number of columns in df

[1] 10

dim(df) # see both the number of rows and number of columns in df

[1] 18 10
Christoph Walsh Programming and Quantitative Skills: R 2023 49 / 115

Dataframes: See all variable names

names(df) shows the variable names of all variables in df.

names(df)

[1] "team" "wins" "draws"
[4] "losses" "goals_for" "goals_against"
[7] "goal_diff" "total_points" "ranking"
[10] "relegation_status"

Later we will learn how to use this command to change the names of variables in
df.

Christoph Walsh Programming and Quantitative Skills: R 2023 50 / 115

Data Cleaning

Very often when we have a spreadsheet, we need to do some “cleaning” before we can
work with it in R.
This can happen when:

The data don’t start at the top of the file because the first few rows contain some
other information.
The dates are not formatted correctly.
Numbers are interpreted as characters.
The data contain extra columns that we don’t want.
There are rows with missing data that we want to omit.
The variable names are not what we want them to be.

Christoph Walsh Programming and Quantitative Skills: R 2023 51 / 115

ASML Stock Price Data

We will learn how to clean data with the asml-trades.csv data.
The variable names are:

Date: The date the data from that row are from.
Open: The opening price of the stock on that day.
High: The highest price the stock traded at on that day.
Low: The lowest price the stock traded at on that day.
Last: The price of the last-traded stock at on that day.
Close: The closing price of the stock on that day.
Number.of.Shares: The number of shares traded that day.
Number.of.Trades: The number of trades made that day.

Christoph Walsh Programming and Quantitative Skills: R 2023 52 / 115

Skipping Rows
If the data don’t begin at the top of a file, you can tell R to ignore the empty rows with
the skip option:

df <- read.csv("asml-trades.csv", skip = 3)
summary(df)

Date Open High Low
Length:521 Min. :394.7 Min. :408.2 Min. :375.8
Class :character 1st Qu.:535.5 1st Qu.:545.5 1st Qu.:525.8
Mode :character Median :592.1 Median :597.4 Median :582.5

Mean :589.2 Mean :597.5 Mean :579.6
3rd Qu.:645.5 3rd Qu.:652.5 3rd Qu.:636.1
Max. :770.5 Max. :777.5 Max. :764.2
NA's :6 NA's :6 NA's :6

Last Close Number.of.Shares Number.of.Trades
Min. :397.4 Min. :397.4 Length:521 Length:521
1st Qu.:535.9 1st Qu.:535.9 Class :character Class :character
Median :589.4 Median :589.4 Mode :character Mode :character
Mean :588.4 Mean :588.4
3rd Qu.:644.0 3rd Qu.:644.0
Max. :770.5 Max. :770.5
NA's :6 NA's :6
Print.table
Mode:logical
NA's:521

Christoph Walsh Programming and Quantitative Skills: R 2023 53 / 115

Formatting Dates
The date variable was read in as a character instead of a date.

head(df$Date, n = 3)

[1] "31/8/2021" "1/9/2021" "2/9/2021"

The dates are in the format “dd/mm/yyyy”. We can convert these to dates using the
as.Date() function, telling R the format the dates are in:

df$Date <- as.Date(df$Date, format = "%d/%m/%Y")

summary(df$Date)

Min. 1st Qu. Median Mean 3rd Qu. Max.
"2021-08-31" "2022-03-01" "2022-08-30" "2022-08-29" "2023-02-28" "2023-08-29"

Christoph Walsh Programming and Quantitative Skills: R 2023 54 / 115

Formatting Dates: More Examples
as.Date("12/31/2023", format = "%m/%d/%Y")

[1] "2023-12-31"

as.Date("31-12-2023", format = "%d-%m-%Y")

[1] "2023-12-31"

as.Date("31/12/23", format = "%d/%m/%y")

[1] "2023-12-31"

as.Date("31 Dec 2023", format = "%d %b %Y")

[1] "2023-12-31"

as.Date("31 December 2023", format = "%d %B %Y")

[1] "2023-12-31"

Christoph Walsh Programming and Quantitative Skills: R 2023 55 / 115

Converting Characters to Numbers

Although most values are numbers, there are some elements with "None" in the
variables Number.of.Shares and Number.of.Trades.
These character elements force the entire variable to be character, because all
elements in a vector must have the same type.
If we convert the character elements to NA (missing values), we can convert the
variable to a numeric vector:

df$Number.of.Shares[df$Number.of.Shares == "None"] <- NA
df$Number.of.Shares <- as.numeric(df$Number.of.Shares)

We could skip the step of converting character elements to NA, but then R would
warn us: NAs introduced by coercion.

Christoph Walsh Programming and Quantitative Skills: R 2023 56 / 115

Deleting Variables

We can delete variables by assigning NULL to that variable.

df$Print.table <- NULL

Alternatively we can drop variables using the column index of the variables we want to drop. We
can drop the 9th variable (Print.table) with:

df <- df[, -9]

Christoph Walsh Programming and Quantitative Skills: R 2023 57 / 115

Dropping Rows with Missing Data
For all variables apart from the date we having missing data on 6 rows. Let’s take a
look at which dates these are:

df$Date[is.na(df$Open)]

[1] "2022-04-15" "2022-04-18" "2022-12-26" "2023-04-07" "2023-04-10"
[6] "2023-05-01"

These are dates around Easter and Christmas when the stock market is closed.
We can drop rows with any missing variables with the na.omit() function.

nrow(df)

[1] 521

df <- na.omit(df)
nrow(df)

[1] 515
Christoph Walsh Programming and Quantitative Skills: R 2023 58 / 115

Renaming Variables

We can change a variable name using its column index as follows:

names(df)[7] <- "num_shares"

We can change a variable name using its current name as follows:

names(df)[names(df) == "Number.of.Trades"] <- "num_trades"

We can change multiple variable names at once with:

names(df)[2:5] <- c("open", "high", "low", "last")

Christoph Walsh Programming and Quantitative Skills: R 2023 59 / 115

Renaming Variables: Converting to Lower Case
We can convert characters to lower case with the tolower() function:

test <- c("hello!", "HELLO!", "Hello!", "HeLlO!")
tolower(test)

[1] "hello!" "hello!" "hello!" "hello!"

We can convert all variable names to lower case with:

names(df) <- tolower(names(df))
names(df)

[1] "date" "open" "high" "low" "last"
[6] "close" "num_shares" "num_trades"

Christoph Walsh Programming and Quantitative Skills: R 2023 60 / 115

Introduction to Plotting

We will now learn how to plot data with R.
We will learn how to make:

▶ Histograms: these display the distribution of a numeric variable.
▶ Bar charts: these display frequencies of values for numeric or categorical data.
▶ Scatter plots: these display the relationship between two numeric variables.

There are two ways to make these plots:
1 The “base R” approach (using built-in plotting functions in R)

� These are quick and easy to make, but don’t look very nice.
2 The “ggplot” approach (using the ggplot2 package).

� These require more code, but are prettier and more customizable.

Christoph Walsh Programming and Quantitative Skills: R 2023 61 / 115

The Palmer Penguins Dataset
We will use this famous dataset to demonstrate plotting.
It contains the weight, gender, flipper length, and bill length and depth for 3 types
of penguins: the adelie, the chinstrap and gentoo.

We can load the dataset with:

install.packages("palmerpenguins")
library(palmerpenguins)
data(penguins)

Christoph Walsh Programming and Quantitative Skills: R 2023 62 / 115

Summarizing the Data
summary(penguins)

species island bill_length_mm bill_depth_mm
Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10
Chinstrap: 68 Dream :124 1st Qu.:39.23 1st Qu.:15.60
Gentoo :124 Torgersen: 52 Median :44.45 Median :17.30

Mean :43.92 Mean :17.15
3rd Qu.:48.50 3rd Qu.:18.70
Max. :59.60 Max. :21.50
NA's :2 NA's :2

flipper_length_mm body_mass_g sex year
Min. :172.0 Min. :2700 female:165 Min. :2007
1st Qu.:190.0 1st Qu.:3550 male :168 1st Qu.:2007
Median :197.0 Median :4050 NA's : 11 Median :2008
Mean :200.9 Mean :4202 Mean :2008
3rd Qu.:213.0 3rd Qu.:4750 3rd Qu.:2009
Max. :231.0 Max. :6300 Max. :2009
NA's :2 NA's :2

Christoph Walsh Programming and Quantitative Skills: R 2023 63 / 115

Histograms in Base R
hist(penguins$body_mass_g)

Histogram of penguins$body_mass_g

penguins$body_mass_g

F
re

qu
en

cy

3000 4000 5000 6000

0
40

80

Christoph Walsh Programming and Quantitative Skills: R 2023 64 / 115

Bar Plots in Base R

The table() function applied to a vector shows the number of times each value
appears.

table(penguins$species)

Adelie Chinstrap Gentoo
152 68 124

We can use a bar plot to visualize these relative frequencies.

Christoph Walsh Programming and Quantitative Skills: R 2023 65 / 115

Bar Plots in Base R
barplot(table(penguins$species))

Adelie Chinstrap Gentoo

0
40

80
14

0

Christoph Walsh Programming and Quantitative Skills: R 2023 66 / 115

Scatter Plots in Base R
plot(penguins$bill_length_mm, penguins$flipper_length_mm)

35 40 45 50 55 60

17
0

20
0

23
0

penguins$bill_length_mm

pe
ng

ui
ns

$f
lip

pe
r_

le
ng

th
_m

m

Christoph Walsh Programming and Quantitative Skills: R 2023 67 / 115

ggplot: The Grammar of Graphics

Although it’s possible to customize the plots from base R, we will instead learn how
to produce nicer plots using the ggplot2 package.
The “gg” in ggplot stands for “Grammar of Graphics”, which is a scheme to layer
elements in a plot.
With the ggplot2 package, we create plots by adding layers.
Install and load the ggplot2 package:

install.packages("ggplot2")
library(ggplot2)

Christoph Walsh Programming and Quantitative Skills: R 2023 68 / 115

Basic Histogram:
ggplot(penguins, aes(body_mass_g)) +
geom_histogram()

0

5

10

15

20

25

2500 3500 4500 5500 6500
body_mass_g

co
un

t

Christoph Walsh Programming and Quantitative Skills: R 2023 69 / 115

Customizing Histograms
We can customize this with options and by adding layers:

Choosing the number of bins.
Changing the color of the bins.
Specifying the axis labels.
Changing the plot theme (theme_minimal() for removing the background colors).

ggplot(penguins, aes(body_mass_g)) +
geom_histogram(bins = 15, fill = "navy") +
xlab("Penguin weight (grams)") +
ylab("Count") +
theme_minimal()

(Output on the next slide)

Christoph Walsh Programming and Quantitative Skills: R 2023 70 / 115

Customizing Histograms

0

10

20

30

40

50

3000 4000 5000 6000
Penguin weight (grams)

C
ou

nt

Christoph Walsh Programming and Quantitative Skills: R 2023 71 / 115

Basic Bar Plot
ggplot(penguins, aes(species)) +
geom_bar()

0

50

100

150

Adelie Chinstrap Gentoo
species

co
un

t

Christoph Walsh Programming and Quantitative Skills: R 2023 72 / 115

Cross-Tabulation
We can also create a bar plot with a cross-tabulation.
When we put 2 variables x and y in the table() function with table(x, y), it
shows us how often each combination of the values in x and y appear together in
the data:

table(penguins$species, penguins$island)

Biscoe Dream Torgersen
Adelie 44 56 52
Chinstrap 0 68 0
Gentoo 124 0 0

Adelie penguins appear on all 3 islands.
Chinstrap penguins appear only on Dream island.
Gentoo penguins appear only on Biscoe island.

Christoph Walsh Programming and Quantitative Skills: R 2023 73 / 115

Basic Bar Plot with Cross-Tabulation
ggplot(penguins, aes(species, fill = island)) +
geom_bar()

0

50

100

150

Adelie Chinstrap Gentoo
species

co
un

t

island

Biscoe

Dream

Torgersen

Christoph Walsh Programming and Quantitative Skills: R 2023 74 / 115

Customizing Bar Plots
We can change the name of the legend and the “fill” colors using the
scale_fill_discrete() option.
We can also specify colors with their hexidecimal format instead of color names.

▶ We can find the hexidecimal format of a color using any color picker tool.

ggplot(penguins, aes(species, fill = island)) +
geom_bar(color = "black") +
xlab("Penguin species") +
ylab("Count") +
scale_fill_discrete(name = "Island",

type = c("#0B0405", "#357BA2", "#DEF5E5")) +
theme_minimal()

(Output on the next slide)

Christoph Walsh Programming and Quantitative Skills: R 2023 75 / 115

Customizing Bar Plots

0

50

100

150

Adelie Chinstrap Gentoo
Penguin species

C
ou

nt

Island

Biscoe

Dream

Torgersen

Christoph Walsh Programming and Quantitative Skills: R 2023 76 / 115

Basic Scatter Plots

ggplot(penguins, aes(bill_length_mm, flipper_length_mm)) +
geom_point()

170

180

190

200

210

220

230

40 50 60
bill_length_mm

fli
pp

er
_l

en
gt

h_
m

m

Christoph Walsh Programming and Quantitative Skills: R 2023 77 / 115

Different Colors for Different Categories

ggplot(penguins, aes(bill_length_mm, flipper_length_mm, color = species)) +
geom_point()

170

180

190

200

210

220

230

40 50 60
bill_length_mm

fli
pp

er
_l

en
gt

h_
m

m

species

Adelie

Chinstrap

Gentoo

Christoph Walsh Programming and Quantitative Skills: R 2023 78 / 115

Customizing Scatter Plots

ggplot(penguins, aes(bill_length_mm, flipper_length_mm, color = species)) +
geom_point() +
scale_color_discrete(name = "Species") +
xlab("Bill length (in mm)") +
ylab("Flipper length (in mm)") +
theme_minimal()

(Output on the next slide)

Christoph Walsh Programming and Quantitative Skills: R 2023 79 / 115

Customizing Scatter Plots

170

180

190

200

210

220

230

40 50 60
Bill length (in mm)

F
lip

pe
r

le
ng

th
 (

in
 m

m
)

Species

Adelie

Chinstrap

Gentoo

Christoph Walsh Programming and Quantitative Skills: R 2023 80 / 115

Making your own R Functions

It’s very easy to create your own R functions.
Consider the quadratic function:

𝑓(𝑥) = −8 − 2𝑥 + 𝑥2

We can create an R function, which we call f(), to calculate the output of this
function as follows:

f <- function(x) {
y <- -8 - 2 * x + x^2
return(y)

}

Christoph Walsh Programming and Quantitative Skills: R 2023 81 / 115

Making your own R Functions
We can then use this custom function like we would any other R function.
The function evaluated at 𝑥 = 2 should equal:

𝑓 (2) = −8 − 2 × (2) + (2)2 = −8 − 4 + 4 = −8
We can check that our custom function gets the same answer:

f(2)

[1] -8

We can also pass vectors into our custom function:

f(c(2, 3, 4))

[1] -8 -5 0
Christoph Walsh Programming and Quantitative Skills: R 2023 82 / 115

Plotting Functions with ggplot.
We can also plot custom functions like this with ggplot.
We first choose a range of values of 𝑥 for which we want to plot the function.
We then create a sequence of values of 𝑥 in this range.
We then evaluate the function at each of these 𝑥 values to get 𝑦.
We then put these 𝑥 and 𝑦 values in a data.frame and plot it with ggplot.

library(ggplot2)
x <- seq(from = -4, to = 6, length.out = 200)
y <- f(x)
df <- data.frame(x, y)
ggplot(df, aes(x, y)) + geom_line()

Sometimes we don’t know what range of 𝑥 to choose. In this case it’s good to pick
some values, make the plot, and then adjust the values and make the plot again.

Christoph Walsh Programming and Quantitative Skills: R 2023 83 / 115

Plotting Functions with ggplot.

−10

0

10

−4 −2 0 2 4 6
x

y

Christoph Walsh Programming and Quantitative Skills: R 2023 84 / 115

Univariate Unconstrained Optimization

When we plotted the function 𝑓(𝑥) = −8 − 2𝑥 + 𝑥2, we saw that it achieved a
minimum at 𝑥 = 1.
We could solve for the minimum analytically by setting the first derivative of the
function to zero:

𝑑𝑓 (𝑥)
𝑑𝑥 = −2 + 2𝑥 = 0 ⇒ 𝑥 = 1

We can also use R to find the minimum of the function using the optimize()
function.

Christoph Walsh Programming and Quantitative Skills: R 2023 85 / 115

The optimize() Function
We need to specify an interval (lower bound and upper bound) to search for the
extreme point.
We also need to specify if we want a maximum or a minimum using the maximum
option.

optimize(f, interval = c(-100, 100), maximum = FALSE)

$minimum
[1] 1

$objective
[1] -9

The optimize() function finds a minimum at 1, and the function takes a value of
−9 at the minimum, i.e. 𝑓(1) = −9
If we instead wanted to find the maximum of a function, we would specify maximum
= TRUE.

Christoph Walsh Programming and Quantitative Skills: R 2023 86 / 115

The optimize() Function
The output of the optimize() function is a list.
If we assign the output to an object called f_min, we can extract the minimum with
f_min$minimum.

▶ The $ extraction operator works for lists just like with dataframes.
We can similarly get the value of the function at the minimum with
f_min$objective.

f_min <- optimize(f, interval = c(-100, 100), maximum = FALSE)
f_min$minimum

[1] 1

f_min$objective

[1] -9
Christoph Walsh Programming and Quantitative Skills: R 2023 87 / 115

Conditional Statements (“If-else”)

Very often we to perform different actions depending on whether something is true
or not.
For this we use if-else statements, which also called conditional statements.
The absolute value function is a simple example of this:

|𝑥| = {−𝑥 𝑥 < 0
𝑥 otherwise

We ask, “is 𝑥 < 0?”. If yes, then return −𝑥. If not, then return 𝑥.
Of course, we can always use the abs() function in R to calculate the absolute
value. But let’s create our own function doing exactly this.

Christoph Walsh Programming and Quantitative Skills: R 2023 88 / 115

Custom absolute value function
my_abs <- function(x) {
if (x < 0) {

return(-x)
} else {

return(x)
}

}
my_abs(-2)

[1] 2

my_abs(3)

[1] 3
Christoph Walsh Programming and Quantitative Skills: R 2023 89 / 115

If-Else Statements for Vectors
The previous function we wrote only works with scalars (vectors of length 1).
If we would try to do my_abs(c(-2, 3)), we would get an error.
To do if-else statements with vectors, we can use the ifelse() function.
The ifelse() function takes 3 arguments:

1 A logical vector (such as testing the condition 𝑥 < 0).
2 What to return if TRUE (i.e. if 𝑥 < 0).
3 What to return if FALSE (i.e. if 𝑥 ≥ 0).

x <- -5:5
x

[1] -5 -4 -3 -2 -1 0 1 2 3 4 5

ifelse(x < 0, -x, x)

[1] 5 4 3 2 1 0 1 2 3 4 5
Christoph Walsh Programming and Quantitative Skills: R 2023 90 / 115

“If-Else If-Else” Statements

Sometimes there can be more than 2 cases to test.
For example, consider the following function which gives the “sign” in front of a
number:

𝑠𝑔𝑛(𝑥) =
⎧{
⎨{⎩

−1 if 𝑥 < 0
0 if 𝑥 = 0
+1 otherwise

For example, 𝑠𝑔𝑛(−2) = −1, 𝑠𝑔𝑛(0) = 0, and 𝑠𝑔𝑛(3) = 1.
We can code a function in R to do this by nesting if-else statements.

Christoph Walsh Programming and Quantitative Skills: R 2023 91 / 115

“If-Else If-Else” Statements
sgn <- function(x) {
if (x < 0) {

return(-1)
} else if (x == 0) {

return(0)
} else {

return(+1)
}

}
sgn(-2)

[1] -1

sgn(3)

[1] 1
Christoph Walsh Programming and Quantitative Skills: R 2023 92 / 115

“If-Else If-Else” Statements with Vectors

We can also nest the ifelse() function inside of itself to get the sign of a vector of
numbers:

x <- -3:3
x

[1] -3 -2 -1 0 1 2 3

ifelse(x < 0, -1, ifelse(x == 0, 0, 1))

[1] -1 -1 -1 0 1 1 1

Christoph Walsh Programming and Quantitative Skills: R 2023 93 / 115

Merging

Merging (or joining) is the R equivalent of the VLOOKUP function in Excel.
When two datasets have a common ID variable linking them together, we can merge
them.
For example:

▶ One dataset with total sales on each day, and another dataset with the temperature on
each day. We can link the datasets using the date.

▶ One dataset with the total sales in each municipality over a year, and another with the
demographic characteristics of each municipality. We can link the datasets using the
municipality name.

Christoph Walsh Programming and Quantitative Skills: R 2023 94 / 115

Merging Example

We will show a merging example using 2 datasets:
1 Average daily petrol prices from 2014-2022.
2 Brent crude oil spot prices from 1987-2022 (excludes weekends and holidays).

We will merge the datasets by date.

Christoph Walsh Programming and Quantitative Skills: R 2023 95 / 115

Data Cleaning: Average Daily Petrol Price Data
df1 <- read.csv("avg_daily_petrol_prices.csv")
head(df1$date)

[1] "2014-06-08" "2014-06-09" "2014-06-10" "2014-06-11" "2014-06-12"
[6] "2014-06-13"

df1$date <- as.Date(df1$date, format = "%Y-%m-%d")
summary(df1)

date e5 e10 diesel
Min. :2014-06-08 Min. :1.159 Min. :1.130 Min. :0.9558
1st Qu.:2016-07-03 1st Qu.:1.340 1st Qu.:1.318 1st Qu.:1.1322
Median :2018-07-29 Median :1.402 Median :1.379 Median :1.2353
Mean :2018-07-29 Mean :1.456 Mean :1.423 Mean :1.2811
3rd Qu.:2020-08-23 3rd Qu.:1.522 3rd Qu.:1.479 3rd Qu.:1.3217
Max. :2022-09-18 Max. :2.261 Max. :2.203 Max. :2.3343

Christoph Walsh Programming and Quantitative Skills: R 2023 96 / 115

Data Cleaning: Brent Crude Oil Spot Price Data
df2 <- read.csv("Europe_Brent_Spot_Price_FOB.csv", skip = 4)
head(df2$Day)

[1] "09/19/2022" "09/16/2022" "09/15/2022" "09/14/2022" "09/13/2022"
[6] "09/12/2022"

df2$Day <- as.Date(df2$Day, format = "%m/%d/%Y")
names(df2) <- c("date", "crude_oil")
summary(df2)

date crude_oil
Min. :1987-05-20 Min. : 9.10
1st Qu.:1996-03-06 1st Qu.: 19.03
Median :2005-01-04 Median : 38.08
Mean :2005-01-12 Mean : 48.22
3rd Qu.:2013-11-24 3rd Qu.: 69.67
Max. :2022-09-19 Max. :143.95Christoph Walsh Programming and Quantitative Skills: R 2023 97 / 115

The merge() Command:
df <- merge(df1, df2, by = "date")

summary(df)

date e5 e10 diesel
Min. :2014-06-09 Min. :1.159 Min. :1.130 Min. :0.9558
1st Qu.:2016-07-04 1st Qu.:1.339 1st Qu.:1.318 1st Qu.:1.1302
Median :2018-07-26 Median :1.402 Median :1.379 Median :1.2345
Mean :2018-07-27 Mean :1.455 Mean :1.422 Mean :1.2797
3rd Qu.:2020-08-19 3rd Qu.:1.521 3rd Qu.:1.478 3rd Qu.:1.3216
Max. :2022-09-16 Max. :2.261 Max. :2.203 Max. :2.3343
crude_oil

Min. : 9.12
1st Qu.: 48.54
Median : 61.18
Mean : 63.47
3rd Qu.: 72.97
Max. :133.18

Christoph Walsh Programming and Quantitative Skills: R 2023 98 / 115

Merging: Dropped Observations
The merged dataset only includes observations where there is a match.
Observations where there is no corresponding match are dropped:

nrow(df1)

[1] 3025

nrow(df2)

[1] 8970

nrow(df)

[1] 2107

To avoid dropping rows, we can use the all.x = TRUE and/or all.y = TRUE
options.

Christoph Walsh Programming and Quantitative Skills: R 2023 99 / 115

Merging with all.x = TRUE

all.x = TRUE : Keeps all observations in the 1st dataset, but only merges data
from the 2nd dataset when there is a match. When there is no match, variables in
the 2nd dataset get assigned NA values.
all.y = TRUE : Keeps all observations in the 2nd dataset, but only merges data
from the 1st dataset when there is a match. When there is no match, variables in
the 1st dataset get assigned NA values.
all = TRUE : This keeps all observations from both datasets, and variables get
assigned NA values when there is no match. This is equivalent to setting both
all.x = TRUE and all.y = TRUE.

Christoph Walsh Programming and Quantitative Skills: R 2023 100 / 115

Merging with all.x = TRUE
df <- merge(df1, df2, by = "date", all.x = TRUE)

summary(df)

date e5 e10 diesel
Min. :2014-06-08 Min. :1.159 Min. :1.130 Min. :0.9558
1st Qu.:2016-07-03 1st Qu.:1.340 1st Qu.:1.318 1st Qu.:1.1322
Median :2018-07-29 Median :1.402 Median :1.379 Median :1.2353
Mean :2018-07-29 Mean :1.456 Mean :1.423 Mean :1.2811
3rd Qu.:2020-08-23 3rd Qu.:1.522 3rd Qu.:1.479 3rd Qu.:1.3217
Max. :2022-09-18 Max. :2.261 Max. :2.203 Max. :2.3343

crude_oil
Min. : 9.12
1st Qu.: 48.54
Median : 61.18
Mean : 63.47
3rd Qu.: 72.97
Max. :133.18
NA's :918

Christoph Walsh Programming and Quantitative Skills: R 2023 101 / 115

Further Remarks on Merging

If merging on multiple variables, use by = c("var1", "var2").
If merging variables differ in df1 and df2, use by.x and by.y instead of by. For
example:

df <- merge(df1, df2, by.x = c("market_area", "date"),
by.y = c("market", "date"))

To avoid sorting the data, use option sort = FALSE.

Christoph Walsh Programming and Quantitative Skills: R 2023 102 / 115

Reshaping
Suppose you have a dataset structured like this (long format):

id variable value
1 1 x 3
2 1 y 5
3 2 x 4
4 2 y 8
5 3 x 3
6 3 y 1

And you wanted to reshape it to look like this (wide format):

id x y
1 1 3 5
2 2 4 8
3 3 3 1

Christoph Walsh Programming and Quantitative Skills: R 2023 103 / 115

Reshaping

Base R has a function that can do this called reshape(), but it’s not very easy to
use.
The package reshape2 contains functions to make it easy to go from long to wide
format and vice-versa:

▶ dcast(df, id ~ variable) : long to wide format.
▶ melt(df, idvars = "id") : wide to long format.

Christoph Walsh Programming and Quantitative Skills: R 2023 104 / 115

Reshaping: Long to Wide

long <- data.frame(
id = rep(1:3, each = 2),
variable = rep(c("x", "y"), times = 3),
value = c(3, 5, 4, 8, 3, 1)

)
library(reshape2)
wide <- dcast(long, id ~ variable)
wide

id x y
1 1 3 5
2 2 4 8
3 3 3 1

Christoph Walsh Programming and Quantitative Skills: R 2023 105 / 115

Reshaping: Wide to Long

melt(wide, id.vars = "id")

id variable value
1 1 x 3
2 2 x 4
3 3 x 3
4 1 y 5
5 2 y 8
6 3 y 1

Christoph Walsh Programming and Quantitative Skills: R 2023 106 / 115

Overlay Line Plots with ggplot
To overlay line plots with ggplot we need our data in long format.

df <- read.csv("avg_daily_petrol_prices.csv")
df$date <- as.Date(df$date, format = "%Y-%m-%d")
head(df, n = 2)

date e5 e10 diesel
1 2014-06-08 1.551987 1.477774 1.353583
2 2014-06-09 1.576623 1.483362 1.385182

df2 <- melt(df, id.vars = "date")
head(df2, n = 2)

date variable value
1 2014-06-08 e5 1.551987
2 2014-06-09 e5 1.576623

Christoph Walsh Programming and Quantitative Skills: R 2023 107 / 115

Overlay Line Plots with ggplot
ggplot(df2, aes(date, value, color = variable)) + geom_line()

1.2

1.6

2.0

2.4

2016 2018 2020 2022
date

va
lu

e

variable

e5

e10

diesel

Christoph Walsh Programming and Quantitative Skills: R 2023 108 / 115

Customizing the Plot

levels(df2$variable) <- c("E5", "E10", "Diesel")
library(ggplot2)
ggplot(df2, aes(date, value, color = variable)) +
geom_line() +
xlab("") +
ylab("Average Daily\nPetrol Price\n(in Euro)") +
scale_color_discrete(name = "Petrol Type:") +
theme_minimal() +
theme(legend.direction = "horizontal",

legend.position = "bottom")

(Output on next slide)

Christoph Walsh Programming and Quantitative Skills: R 2023 109 / 115

Customizing the Plot

1.2

1.6

2.0

2.4

2016 2018 2020 2022

A
ve

ra
ge

 D
ai

ly
P

et
ro

l P
ric

e
(in

 E
ur

o)

Petrol Type: E5 E10 Diesel

Christoph Walsh Programming and Quantitative Skills: R 2023 110 / 115

Aggregating by Group

If we want to get the sum or average by group we can use the aggregate()
function.
The aggregate() function is a bit like the R version of pivot tables in Excel.
If we want to get the average of x by group g in the dataframe df, we use:

aggregate(x ~ g, FUN = mean, data = df)

We’ll show this using the petrol price data as an example.

Christoph Walsh Programming and Quantitative Skills: R 2023 111 / 115

Average Price of E5 Petrol by Year
df <- read.csv("avg_daily_petrol_prices.csv")
df$date <- as.Date(df$date, format = "%Y-%m-%d")
library(lubridate)
df$year <- year(df$date)
aggregate(e5 ~ year, FUN = mean, data = df)

year e5
1 2014 1.519195
2 2015 1.393170
3 2016 1.302767
4 2017 1.368414
5 2018 1.454098
6 2019 1.430592
7 2020 1.288080
8 2021 1.579992
9 2022 1.933512

Christoph Walsh Programming and Quantitative Skills: R 2023 112 / 115

Maximum Price of E5 by Year

aggregate(e5 ~ year, FUN = max, data = df)

year e5
1 2014 1.605252
2 2015 1.519229
3 2016 1.395620
4 2017 1.414228
5 2018 1.573760
6 2019 1.555623
7 2020 1.461060
8 2021 1.761985
9 2022 2.260581

Christoph Walsh Programming and Quantitative Skills: R 2023 113 / 115

Average Price of E5 and E10 by Year

aggregate(cbind(e5, e10) ~ year, FUN = mean, data = df)

year e5 e10
1 2014 1.519195 1.461632
2 2015 1.393170 1.373425
3 2016 1.302767 1.282375
4 2017 1.368414 1.345430
5 2018 1.454098 1.430955
6 2019 1.430592 1.408177
7 2020 1.288080 1.253603
8 2021 1.579992 1.522833
9 2022 1.933512 1.875897

Christoph Walsh Programming and Quantitative Skills: R 2023 114 / 115

Average Price of All Variables by Year

aggregate(. ~ year, FUN = mean, data = df)

year date e5 e10 diesel
1 2014 16332.0 1.519195 1.461632 1.334612
2 2015 16618.0 1.393170 1.373425 1.173013
3 2016 16983.5 1.302767 1.282375 1.081282
4 2017 17349.0 1.368414 1.345430 1.161306
5 2018 17714.0 1.454098 1.430955 1.287264
6 2019 18079.0 1.430592 1.408177 1.265341
7 2020 18444.5 1.288080 1.253603 1.111068
8 2021 18810.0 1.579992 1.522833 1.387114
9 2022 19123.0 1.933512 1.875897 1.941386

Christoph Walsh Programming and Quantitative Skills: R 2023 115 / 115

