
Programming and Quantitative Skills for IBA - R

Christoph Walsh

2023-10-01

ii

Table of contents

1 About 1

2 Getting Started 3
2.1 What is R and what is RStudio? 3

2.1.1 What is a programming language? 3
2.1.2 Why learn R? . 4

2.2 Installing R and RStudio . 5
2.2.1 Installation on Windows 5
2.2.2 Installation on MacOS . 5
2.2.3 Installation on Ubuntu/Debian 5

2.3 Opening RStudio . 5

3 R as a Calculator 7
3.1 The R Console . 7
3.2 Addition, Subtraction, Multiplication and Division 10
3.3 Troubleshooting: “Escaping” in R 11
3.4 Exponentiation (Taking Powers of Numbers) 11
3.5 Absolute value . 11
3.6 Square and Cubed Roots . 13
3.7 Exponentials . 14
3.8 Logarithms . 15

4 Objects and Object Types 19
4.1 The Assignment Operator . 19

4.1.1 Assigning Objects . 19
4.1.2 The Environment Tab in RStudio 19
4.1.3 Troubleshooting with the Assignment Operator 20

4.2 Common Object Types . 20
4.2.1 Numeric Vectors . 21
4.2.2 Logical Vectors . 21
4.2.3 Character Vectors . 21
4.2.4 Factors (Categorical Variables) 22
4.2.5 Data Frame . 22

iii

iv TABLE OF CONTENTS

4.2.6 Lists . 23

5 Operations on Vectors 25
5.1 Indexing . 25
5.2 Sequences . 26
5.3 Repeating Numbers . 26
5.4 Summary Statistics for Vectors 27

6 Comparing Vectors 29
6.1 Comparing Numerical Vectors . 29
6.2 Comparing Logical Vectors . 30

7 R Scripts 33
7.1 Creating a New R Script . 33
7.2 Running the Commands in an R Script 34

7.2.1 Selecting Lines and Running 34
7.2.2 Sourcing . 35

7.3 Commenting in R . 35
7.3.1 Commenting as Annotation 35
7.3.2 Commenting to Not Run Certain Commands 36

8 Loading a CSV Dataset 37
8.1 Structure of a CSV file . 37

Commas as Part of Character Variables 38
Decimal Commas in CSV Files 38

8.2 Reading in a CSV file . 39
8.2.1 Absolute Paths . 39
8.2.2 Relative Paths . 41
8.2.3 RStudio Projects . 42

9 R Packages 49
9.1 Example Setting: Reading Excel Files 49
9.2 Installing packages . 50

9.2.1 From the command line 50
9.2.2 From RStudio . 50

9.3 Loading packages . 51
9.4 Data Formats from other Software (Optional) 52

10 Dataframes: Indexing 55
10.1 Running Example: The Eredivisie Results from 2022/23 55
10.2 Indexing with Dataframes . 56

11 Dataframes: Creating Variables 59
11.1 Goal Difference . 60
11.2 Total Points . 61
11.3 Team Ranking . 61
11.4 Relegation Status . 64

TABLE OF CONTENTS v

12 Dataframes: Summary Statistics 67
12.1 summary() for Dataframes . 68
12.2 head() and tail() . 69
12.3 nrow() and ncol() . 70
12.4 names() . 70

13 Data Cleaning 71
13.1 Skipping Rows . 72
13.2 Formatting Dates . 73

13.2.1 Converting Dates in the ASML Example 73
13.2.2 Converting Dates from Other Formats 74
13.2.3 Converting Dates with Month Names (Optional) 75

13.3 Converting Characters to Numbers 75
13.4 Deleting columns . 76
13.5 Dropping rows with missing data 76
13.6 Renaming Variables . 78

14 Introduction to Plotting 79
14.1 Introduction . 79
14.2 Example Setting: Penguins . 79
14.3 Data Inspection . 80
14.4 Basic Plotting with Base R . 81

14.4.1 Histograms . 81
14.4.2 Bar Plot . 82
14.4.3 Scatter Plots . 82

15 Data Visualization with ggplot 85
15.1 Introduction . 85
15.2 Histograms . 85

15.2.1 Basic Histogram . 85
15.2.2 Customizing a Histogram 87

15.3 Bar Plots . 90
15.4 Scatter Plots . 92
15.5 Saving Plots . 94

16 Making Functions 95
16.1 Creating Simple Functions . 95
16.2 Plotting Functions . 96

17 Univariate Unconstrained Optimization 99
17.1 Plotting Approach . 99
17.2 Analytic Solution . 100
17.3 Using Optimization . 100

18 Conditional Statements 103
18.1 If-else statements . 103
18.2 The ifelse() function . 104

vi TABLE OF CONTENTS

18.3 “If else-if else” statements . 105
“If else-if else” statements with vectors 106

19 Merging 107
19.1 Data Cleaning . 107
19.2 Merging . 108

19.2.1 The merge() Command 108
19.2.2 Keeping Unmatched Observations 109
19.2.3 Other Merging Options 110

20 Reshaping 113
20.1 From Long to Wide . 113
20.2 From Wide to Long . 114
20.3 Example Usage Case . 114

21 Aggregating by Group 117

Tutorial Exercises 121

Chapter 1

About

Welcome to the online “book” for the R part of the first-year IBA course Pro-
gramming and Quantitative Skills. This book accompanies the content covered
in the lectures. On Canvas, I will post which chapters/slides we will cover in
each lecture, as well as other material.

1

https://www.tilburguniversity.edu/education/bachelors-programs/international-business-administration
http://canvas.uvt.nl/

2 CHAPTER 1. ABOUT

Chapter 2

Getting Started

In this chapter we will briefly talk about what R and RStudio are, and how to
install them on your computer.

2.1 What is R and what is RStudio?
R is a programming language which specializes in statistical computing and
graphics.

RStudio, on the other hand, is a desktop application where you can write R
code, execute R programs, and view plots created by R.

Thus R is the programming language itself, and RStudio is the desktop appli-
cation you will use to write and execute R code.

2.1.1 What is a programming language?
Without getting into a complicated details, a programming language is a way
to communicate to a computer via written text in a way that the computer can
understand so that you can instruct it to do various operations for you. This is
very different to how we might be used to interacting with a computer, which
often involves pointing and clicking on different buttons and menus with your
mouse.

Knowing how to program is a very useful skill because you can automate repet-
itive tasks that would take you a very long time if you had to them “by hand”
(i.e. by clicking things with your mouse). For example, suppose you work in a
hotel in a city and you need to check how much your competitors are charging
for rooms on different days so that you can adjust prices to stay competitive.
Every day you have to go to all the different websites of the competing hotels
and take note of the prices in an Excel sheet. With programming, what you

3

4 CHAPTER 2. GETTING STARTED

could do instead is write code that tells the computer to automatically visit
those websites every day, record the hotel room prices, and put them in an Ex-
cel sheet for you. This is a process called web scraping. This is just one example
of the many ways programming languages can automate repetitive tasks.

When humans speak to each other and someone makes a grammar mistake, it
usually isn’t a big deal. We usually know what they mean. But if you make
a “syntax” mistake in a programming language, it won’t understand what you
mean. The computer will either throw an error or, worse still, do something
you didn’t want it to do. Therefore we need to be very careful when writing in
a programming language.

2.1.2 Why learn R?
There are many different programming languages out there, and each have their
different strengths and weaknesses. R is specialized in working with datasets,
performing statistical analyses and visualizing data. These will be very useful
for later courses in the IBA program, and for many different jobs you might
have in the future after your studies.

R has many advantages over alternatives:

• R is free, open source and runs on all common operating systems. This
means you can share your code with anyone and they will be able to run
it, no matter what computer they are on or where they are in the world.

• There is a very large active community that creates packages to do a wide-
range of operations, keeping R up to date with the latest developments in
Statistics and other fields. Excellent community help is also available at
Stackoverflow.

• The R language is arguably easier to learn than some similar alternatives.
Programming languages also have a lot in common, so if you learn one
it’s much easier to learn another one. With some R knowledge, it makes
learning other languages, such as Python or Julia, much easier.

• You can code in R using RStudio which is a great free integrated desktop
environment to write and run R code.

• R is also extremely versatile in what it can do. For example, this online
“book” and the accompanying slides were made entirely in RStudio! R
can also make very nice data visualizations, such as this or this.

In the second year of the IBA program you will take Statistics 2. There we will
learn how to estimate statistical models using R. You can therefore also think of
this course as a foundation providing the background programming knowledge
for that course. Thus your journey with R won’t end after you take the exam
for this course. You will use it again and again throughout your studies!

More recently, employers are increasingly looking for people with programming
skills. Knowledge of R is therefore a great addition to your CV when you look
for a job after your studies!

https://stackoverflow.com
https://timogrossenbacher.ch/content/images/size/w2000/2023/07/bm-thematic-bivariate-map-with-legend-1-2.png
https://ucsb-meds.github.io/ggplot2-workflow/index_files/figure-html/unnamed-chunk-13-1.png

2.2. INSTALLING R AND RSTUDIO 5

2.2 Installing R and RStudio
To get started, we need to install both R and RStudio. Install R first, then
RStudio:

• To download and install R, go here.
• To download and install RStudio, go here.

If you are on a university computer, R and RStudio will already be installed.

Below are OS-specific instructions.

2.2.1 Installation on Windows
• Go here, click on “Download R for Windows” and then click on the link

for “base”. Then click on “Download R-X.Y.Z for Windows”, where X.Y.Z
is the latest version number. Click on the downloaded .exe file and follow
the installation steps.

• Go here and download the .exe file listed next to the Windows OS. Click
on the downloaded .exe file and follow the installation steps.

On Canvas you will find a video demonstration of me installing both R and
RStudio on Windows.

2.2.2 Installation on MacOS
• Go here, click on “Download R for macOS”. If you have a newer Mac with

an M1 or M2 processor, download the .pkg file with “arm64” in the name.
For older Macs, download the “x86_64” one. Click on the file and follow
the installation steps.

• Go here and download the .dmg file listed next to macOS. Click on the
downloaded .dmg file and copy it to your applications.

If you have difficulties, there are many videos on YouTube demonstrating the
installation of R and RStudio on a Mac.

2.2.3 Installation on Ubuntu/Debian
• To install R, run the following command in the command line: sudo apt

install r-base.
• To install RStudio, first download the .deb file from the RStudio website.

Then in terminal, change to the directory containing the file and install it
with sudo dpkg -i rstudio-*.deb.

2.3 Opening RStudio
After the installation, try opening RStudio on your computer. If prompted to
choose a version of R, just choose the default option. After opening RStudio

https://mirror.lyrahosting.com/CRAN
https://posit.co/download/rstudio-desktop/
https://mirror.lyrahosting.com/CRAN
https://posit.co/download/rstudio-desktop/
https://mirror.lyrahosting.com/CRAN
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/

6 CHAPTER 2. GETTING STARTED

you should see something like:

What we will do in the next chapter is learn some basic commands in R.

Chapter 3

R as a Calculator

In this chapter we will learn how to use R as a calculator.

3.1 The R Console

The R console is where you provide commands in the R programming language
to be executed by the computer. It is possible to access the R console without
RStudio using a very basic command-line interface that looks like this:1

1If the date is 01/01/69, the format %d/%m/%y will interpret it as January 1 1969. But if
the date is 01/01/68, it will interpret it as January 1 2068. All short-format years after 69
are put in the 1900s and all short-format years before 69 are put in the 2000s. You don’t need
to remember these details for the exam though because we won’t ever use dates outside of
1969-2068.

7

8 CHAPTER 3. R AS A CALCULATOR

Figure 3.1: R Terminal

However, RStudio also has this R console, as well as many other useful features.
Therefore we will stick to using R within RStudio for the rest of this course.

Let’s learn how to do a very basic calculation in R. If we want to calculate
2 + 3, we simply go to the Console tab in RStudio and type 2+3, just like in the
screenshot below:

3.1. THE R CONSOLE 9

We then press Enter to see the answer. What we will see then is R giving the
following output:

The [1] before the 5 here essentially means the 5 is the first number in the
output. This is obvious here, but this feature will be more useful later when we
do operations on more numbers. But for now, we can just ignore the [1].

In this book, I won’t always show screenshots like this. Instead I will show code

10 CHAPTER 3. R AS A CALCULATOR

snippets in boxes like this:

2 + 3

[1] 5

The part that is code will be in color and the output will be in a separate
gray box below it. In these code boxes there is a small clipboard icon on the
right which you can use to copy the code to be able to experiment with it in
RStudio yourself. This will be useful when we start writing longer commands
and programs.

We will now go through some different operations. We will also learn about
functions and their arguments along the way, which we will be be using again
and again throughout the rest of this course.

3.2 Addition, Subtraction, Multiplication and
Division

Addition, subtraction, multiplication and division are given by the standard +,
-, * and / operators that you would use in other programs like Excel, or even
in an internet search engine. For example:

2 + 3

[1] 5

5 - 3

[1] 2

2 * 3

[1] 6

3 / 2

[1] 1.5

It is also possible to do multiple operations at the same time using parentheses.
For example, suppose we wanted to calculate:

2 + 4
4 × 2 = 6

8 = 0.75

We can calculate this in R as follows:

(2 + 4) / (4 * 2)

[1] 0.75

3.3. TROUBLESHOOTING: “ESCAPING” IN R 11

3.3 Troubleshooting: “Escaping” in R
Suppose by accident you left out the closing parentheses and you see the follow-
ing:

> (2 + 4) / (4 * 2
+

R didn’t run the command, but it also didn’t give an Error. What happened is
that Enter moved to a new line instead of executing the command. Essentially
R is waiting for you to finish the command by closing the parentheses. If you
want to “Escape” such a situation, you just need to press the Esc button. In
general, if anything strange happens in R and you get stuck, you can always
press the Esc button to return to “normal”.

3.4 Exponentiation (Taking Powers of Num-
bers)

In mathematics notation 𝑥𝑛 means we multiply 𝑥 by itself 𝑛 times. For example,
23 = 2 × 2 × 2 = 8. In R we use the ^ operator to do this:

2^3

[1] 8

3.5 Absolute value
Taking the absolute value turns a negative number into the same number with-
out a minus sign. It has no effect on positive numbers.

In mathematics notation we write |𝑥| for the absolute value of 𝑥. The formal
definition is:

|𝑥| = {𝑥 if 𝑥 ≥ 0
−𝑥 otherwise

Here are some examples:

• | − 2| = 2
• |3| = 3.

This is what the function looks like when we plot it for different 𝑥:

if (!require(ggplot2)) install.packages("ggplot2")
library(ggplot2)
x <- seq(-2, 2, length.out = 1000)
ggplot(data.frame(x, y = abs(x)), aes(x, y)) +

12 CHAPTER 3. R AS A CALCULATOR

geom_line() +
ylab("abs(x)")

0.0

0.5

1.0

1.5

2.0

−2 −1 0 1 2
x

ab
s(

x)

We’ll learn how to make plots like this later in Chapter 16.

In R we can calculate these with:

abs(-2)

[1] 2

abs(3)

[1] 3

Taking the absolute value in R involves using what is called a function. Func-
tions are used by calling their names and giving the arguments to the function
in parentheses. When we do abs(-2), abs is the name of the function and -2
is the argument.

In many ways the functions in R work a lot like the functions in Excel, just
they might have different names or be used a bit differently. For example, in
Excel you write =ABS(-2) to take the absolute value of −2. The argument is
the same, and the function name only differs in that in Excel you need to use
capital letters whereas in R you use lowercase letters (in addition, Excel requires
you to put an = before the function name).

When using functions it is helpful to read their help pages. You can look at
this by typing help(abs) or ?abs in the Console and pressing Enter. The help
page then pops up in the Help tab, like in the screenshot below:

3.6. SQUARE AND CUBED ROOTS 13

Figure 3.2: Help Page for abs

We can see that it says abs(x) computes the absolute value of x. So we
are told that x is the argument.

We will be using many different functions and it’s a good habit of to look at
their help pages. The help pages will also be available to you in the exam.

3.6 Square and Cubed Roots
The square root of a number 𝑥 is the 𝑦 that solves 𝑦2 = 𝑥. For example, if 𝑥 = 4,
both 𝑦 = −2 and 𝑦 = 2 solve this. The principal square root is the positive 𝑦
from this.

Here is what the square root function looks like for different 𝑥:

if (!require(ggplot2)) install.packages("ggplot2")
library(ggplot2)
x <- seq(0, 10, length.out = 1000)
ggplot(data.frame(x, y = sqrt(x)), aes(x, y)) +
geom_line() +
ylab("sqrt(x)")

14 CHAPTER 3. R AS A CALCULATOR

0

1

2

3

0.0 2.5 5.0 7.5 10.0
x

sq
rt

(x
)

We take the principal square root in R using the sqrt() function:

sqrt(9)

[1] 3

It is also possible to take a square root by exponentiating a number by 1
2 :

9^(1/2)

[1] 3

With this approach we can also take the cubed root of a number: 3√8 = 8 1
3 = 2:

8^(1/3)

[1] 2

3.7 Exponentials
A very important function in mathematics and statistics is the exponential func-
tion. The definition of exp (𝑥), or 𝑒𝑥, is given by:

𝑒𝑥 = lim
𝑛→∞

(1 + 𝑥
𝑛)

𝑛

Note: you don’t need to know or remember this definition for the exam. You
only need to know how to use the exponential function in R.

This is what the function looks like:

3.8. LOGARITHMS 15

if (!require(ggplot2)) install.packages("ggplot2")
library(ggplot2)
x <- seq(-2, 2, length.out = 1000)
ggplot(data.frame(x, y = exp(x)), aes(x, y)) +
geom_line() +
ylab("exp(x)")

0

2

4

6

−2 −1 0 1 2
x

ex
p(

x)

In R we can use the exp() function to calculate the exponential of any number:

exp(1)

[1] 2.718282

3.8 Logarithms
Another common mathematical function is the logarithm, which is like the re-
verse of exponentiation.

The log of a number 𝑥 to a base 𝑏, denoted log𝑏 (𝑥), is the number of times
we need to multiply 𝑏 by itself to get 𝑥. For example, log10 (100) = 2, because
10 × 10 = 100. We need to multiply the base 𝑏 = 10 by itself twice to get to
𝑥 = 100.

A special logarithm is the natural logarithm, log𝑒(𝑥), which is the logarithm to
the base exp(1) = 𝑒1 ≈ 2.7183. This is also written as ln(𝑥).
This is what the function looks like:

if (!require(ggplot2)) install.packages("ggplot2")

16 CHAPTER 3. R AS A CALCULATOR

library(ggplot2)
x <- seq(0.01, 10, length.out = 1000)
ggplot(data.frame(x, y = log(x)), aes(x, y)) +
geom_line() +
ylab("ln(x)")

−2.5

0.0

2.5

0.0 2.5 5.0 7.5 10.0
x

ln
(x

)

In R we use the log() function to calculate the natural logarithm:

log(1)

[1] 0

What if we want to calculate the logarithm to a base other than 𝑒? If we look
at the help page for log() using help(log) or ?log we can see that the log
function has 2 arguments:

• x: the number we want to take the log of.
• base: “the base with respect to which the logarithms are computed. De-

faults to 𝑒=exp(1)”.

This is the first time that we have seen a function with more than one argument.
Earlier when we used the log() function to calculate the natural logarithm we
only used one argument because we used the default setting for the base. But
when we want to use a base other than 𝑒, we need to specify it.

How we calculate log10 (100) in R is as follows:

log(100, base = 10)

[1] 2

3.8. LOGARITHMS 17

We write both arguments into the log() function, separated by commas.

This is just like how we used functions with more than one argument in Excel, for
example the VLOOKUP function. We separated the arguments there by commas
as well.

18 CHAPTER 3. R AS A CALCULATOR

Chapter 4

Objects and Object Types

In this chapter we will learn how to store objects in the R environment and
about different object types in R.

4.1 The Assignment Operator
4.1.1 Assigning Objects
In the previous chapter when we were using R as a calculator, we simply typed
the numbers we wanted to add if we wanted to add them, like 2 + 3. We can
also store numbers in R as objects. We do this using the assignment operator
<-, which is a “less than symbol” and a “minus” symbol next to each other.

For example, let’s assign the value 2 to an object called 𝑎 and the value 3 to an
object called 𝑏:

a <- 2
b <- 3

The <- operator assigns the value 2 to a, and similarly for b.

Variable names can be multiple characters long and can contain dots (.), un-
derscores (_) and numbers - as long as they don’t start with a number. For
example, a1, a.1, and a_1 are possible variable names, but 1a is not.

Because we use the assignment operator <- so often, RStudio has a shortcut for
it. If you hold Alt and press -, RStudio will write <-, including spaces around
it. It makes the spaces because a <- 2 is easier to read than a<-2.

4.1.2 The Environment Tab in RStudio
When we do this, we see values 𝑎 = 2 and 𝑏 = 3 in the Environment tab in
RStudio, just like in the screenshot below:

19

20 CHAPTER 4. OBJECTS AND OBJECT TYPES

We can now perform all the operations we learned about using 𝑎 and 𝑏 instead
of the numbers. For example:

a + b

[1] 5

a / b

[1] 0.6666667

4.1.3 Troubleshooting with the Assignment Operator
Although you can assign 2 to 𝑎 with either a <- 2 or a<-2, it is very important
that you don’t have a space in between the < and the - in the assignment
operator. If you try to instead do a < - 2, R will check if a is less than -2,
instead of assigning 2 to a. If a is not stored in the Environment you will get
an error that says Error: object 'a' not found. This is another reason why
need to be very careful when typing our code! It’s a good idea therefore to use
the Alt+- shortcut to make <-.

It is also possible to use the = sign for assignment instead of <-. For example, it’s
possible to do a = 2 instead. I will use <- in this course as it is the recommended
approach in R style guides, but you are free to use = instead in the exam and
assignments if you prefer.

4.2 Common Object Types
We now go through some different object types.

4.2. COMMON OBJECT TYPES 21

4.2.1 Numeric Vectors
In R we often work with vectors, which are collections of values of the same
type. You can think of these as a column of data in an Excel file. If we want to
store the vector of numbers

𝑎 =
⎛⎜⎜⎜
⎝

1
3
7
2

⎞⎟⎟⎟
⎠

in R we can use the c() function, where “c” stands for combine. We put each
element of the vector in c() separated by commas:

a <- c(1, 3, 7, 2)

Notice in the Environment tab that now we have overwritten the a <- 2 that
we had before. We can see that a is now a num [1:4]: it’s a numeric vector
with 4 elements.1

One thing worth mentioning is that when we store single numbers, such as with
b <- 3, we are actually creating a numeric vector with only 1 element (instead
of 4 like in the example above). We could create an identical object with b <-
c(3) instead.

4.2.2 Logical Vectors
Often we have data on a variable where the answers are “Yes” or “No”. We
often code these as a logical vector which is binary: the elements are either
TRUE (corresponding to “Yes”) or FALSE (corresponding to “No”). For example:

a <- c(TRUE, FALSE, TRUE, TRUE)

We can see in the Environment tab that a is now a logi [1:4]: it’s a logical
vector with 4 elements. It’s possible to convert logical vectors into numeric ones
with 1s replacing the TRUEs and 0s replacing the FALSEs. We can do this with
the as.numeric() function:

as.numeric(a)

[1] 1 0 1 1

4.2.3 Character Vectors
R can also work with character vectors which are vectors composed of letters or
words instead of numbers or logical constants (TRUE or FALSE). We have to write

1If the date is 01/01/69, the format %d/%m/%y will interpret it as January 1 1969. But if
the date is 01/01/68, it will interpret it as January 1 2068. All short-format years after 69
are put in the 1900s and all short-format years before 69 are put in the 2000s. You don’t need
to remember these details for the exam though because we won’t ever use dates outside of
1969-2068.

22 CHAPTER 4. OBJECTS AND OBJECT TYPES

the words in quotes, otherwise R will think we are providing it with variable
names instead:

a <- c("programming", "and", "quantitative", "skills")

4.2.4 Factors (Categorical Variables)
Surveys often contain questions with multiple possible responses. For example,
imagine a survey which asked people how long it took them to travel to campus
and what mode of transportation they used, with the options being:

1. Train
2. Walk
3. Cycle

Suppose we have 6 responses for this survey and we coded the times (in min-
utes) as a numeric vector time and the travel modes as a character vector
travel_mode:

time <- c(25, 20, 15, 10, 17, 30)
travel_mode <- c("train", "train", "walk", "cycle", "walk", "train")

Because categorical variables like travel_mode are so common, R has a special
object type for them called factors. We can turn any vector into a factor using
the factor() function:

travel_mode <- factor(travel_mode)
travel_mode

[1] train train walk cycle walk train
Levels: cycle train walk

We can see in the Environment that we have a factor with 3 levels, "cycle",
"train", "walk". The levels are all of the different categories.

Having a variable in this format will be very useful when we learn how to
visualize data. They will also become very useful when we estimate statistical
models with categorical data in Statistics 2 next year.

4.2.5 Data Frame
An object that we will use very frequently is the data.frame. This is a rect-
angular object with different columns representing different variables and rows
representing different observations. For example, we could collect the 6 survey
respondents about their commute into a data.frame as follows:

df <- data.frame(travel_mode, time)
df

travel_mode time
1 train 25

4.2. COMMON OBJECT TYPES 23

2 train 20
3 walk 15
4 cycle 10
5 walk 17
6 train 30

The variable names are listed on top with the values underneath. On the side
we can see the numbers 1 to 6, which index the rows of the data.frame.

We can also view the data.frame in RStudio by clicking on df in the Environ-
ment tab. You could also open this by typing View(df) in the console. The
first row means that the first respondent took the train and it took 25 minutes.
The second row means that the second respondent also took the train and it
took 20 minutes.

Figure 4.1: Viewing a dataframe in RStudio

When variables are organized in a data.frame, it becomes very easy to summa-
rize the data and make visualizations with them. We will learn how to do this
in the upcoming chapters.

4.2.6 Lists
A data.frame is actually a special type of list, which is another object type.
While all elements of a vector (created with the c() function) must have the

24 CHAPTER 4. OBJECTS AND OBJECT TYPES

same type (numeric, logical or factor), a list can have elements of any type,
and also any length.

Here is an example of a list:

my_list <- list(x = 1:3, y = TRUE, z = c("a", "b"))

It has elements that are numeric, logical and character vectors, and the elements
all have different lengths (3, 1 and 2).

A data.frame can have elements/columns of different types (such as in the
travel mode example above, which had numeric and factor variables), but all
elements/columns of a data.frame must have the same length (unlike a list
where any length is possible).

Chapter 5

Operations on Vectors

In this chapter we will learn how to do some operations on vectors in R.

5.1 Indexing
Suppose we have a vector a with 5 elements and we wanted to isolate the 3rd
element of it. We can do this with what is called indexing. To get the 3rd
element of a vector a, we do a[3]. Let’s see this with an example:

a <- c(1, 2, 4, 3, 2)
a[3]

[1] 4

We can also extract multiple elements of the vector using a vector of indices
inside the []. For example, suppose we wanted to get the 1st, 3rd and 4th
element of a. We would put the vector c(1, 3, 4) inside the square brackets:

a[c(1, 3, 4)]

[1] 1 4 3

We can also extract elements of a vector using a logical vector. Doing this will
extract the elements where the logical vector is TRUE. To do this, the logical
vector needs to have the same length as the vector we are trying to index. Like
above, if we want the 1st, 3rd and 4th element of a, we can use a vector with
TRUE in the 1st, 3rd and 4th element and FALSE everywhere else:

a[c(TRUE, FALSE, TRUE, TRUE, FALSE)]

[1] 1 4 3

Suppose I want everything in a vector except one element: I want to exclude
one element from the vector. For example, suppose I want to see the entire

25

26 CHAPTER 5. OPERATIONS ON VECTORS

vector a except the 2nd element. We can do this using -2 in the brackets:

a[-2]

[1] 1 4 3 2

5.2 Sequences
Often it is useful to create a sequence of numbers. For a simple sequence like 1,
2, 3, …, 10, we can just do:

1:10

[1] 1 2 3 4 5 6 7 8 9 10

We can also make the sequence go backwards by reversing the numbers:

10:1

[1] 10 9 8 7 6 5 4 3 2 1

For sequences that don’t jump in 1s we can use the seq() function. Suppose we
wanted to have a sequence from 10 to 100 with steps of 10. We do that with:

seq(from = 10, to = 100, by = 10)

[1] 10 20 30 40 50 60 70 80 90 100

Instead of specifying the step length with by, we can alternatively specify the
length of the sequence. Suppose I wanted to have a sequence going from 0 to
1 in equal steps with 5 numbers in total. I can do that using the length.out
option:

seq(from = 0, to = 1, length.out = 5)

[1] 0.00 0.25 0.50 0.75 1.00

5.3 Repeating Numbers
If I wanted to create a vector which is 1 repeated 5 times, I could do:

c(1, 1, 1, 1, 1)

[1] 1 1 1 1 1

But this would get very annoying to type and I could easily make a mistake if I
wanted to make many more 1s. If we want to repeat a number many times, we
can use the rep() function. For example, if we want to make 100 1s, we would
do:

rep(1, times = 100)

5.4. SUMMARY STATISTICS FOR VECTORS 27

[1] 1
[38] 1
[75] 1

At the start of Chapter 3 we briefly mentioned that the [1] you see at the start
of the output meant that the number we saw was the first one. Because with
this example we have many numbers that run onto multiple lines, we can see a
[38] at the start of line 2. This means that the first 1 on the 2nd line is the
38th element of the vector. The [75] on the 3rd line means the 1st one on that
line is the 75th element.

The rep() function can also be combined with vectors. Suppose I wanted to
repeat 1, 2, 3 four times:

rep(1:3, times = 4)

[1] 1 2 3 1 2 3 1 2 3 1 2 3

And if I instead wanted to repeat 1, 2, 3, each 4 times, I would use the each
option:

rep(1:3, each = 4)

[1] 1 1 1 1 2 2 2 2 3 3 3 3

5.4 Summary Statistics for Vectors
We can get summary statistics for vectors using functions. Let’s look at some
common ones using a simple vector with the sequence 1 to 10:

a <- 1:10
a

[1] 1 2 3 4 5 6 7 8 9 10

Get the number of elements of a:

length(a)

[1] 10

Get the minimum value in a:

min(a)

[1] 1

Get the maximum value in a:

max(a)

[1] 10

Get the average of all elements in a:

28 CHAPTER 5. OPERATIONS ON VECTORS

mean(a)

[1] 5.5

Get the median of all elements in a:

median(a)

[1] 5.5

Note on the median: Normally the median orders all elements of the vector
and gives the element in the middle. Because we have an even number of
elements in a (10 elements), the median is the average of the two values in the
middle after sorting. Because it’s already sorted, these middle values are 5 and
6, so the median is (5 + 6)/2 = 5.5.

Get the sum of all elements in a:

sum(a)

[1] 55

A useful way to quickly summarize a numeric vector is with the summary()
function, which gives the minimum, maximum, mean, median and interquartile
range:

summary(a)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 3.25 5.50 5.50 7.75 10.00

Another useful way of summarizing data is to tabulate it: to count the number
of occurrences of each value. We can do that with the table() function:

a <- c(1, 3, 2, 4, 4, 2, 4)
table(a)

a
1 2 3 4
1 2 1 3

The output here means that 1 appeared once, 2 appeared twice, 3 appeared
once and 4 appeared three times.

Chapter 6

Comparing Vectors

6.1 Comparing Numerical Vectors
Consider the following two vectors:

a <- 1:5
a

[1] 1 2 3 4 5

b <- 5:1
b

[1] 5 4 3 2 1

To find the indices of elements where 𝑎 > 𝑏, we can use a > b. This returns a
logical vector which is TRUE when 𝑎 is greater than 𝑏 and is FALSE otherwise:

a > b

[1] FALSE FALSE FALSE TRUE TRUE

Thus 𝑎 > 𝑏 in the 4th and 5th element only, as 4 > 2 in the 4th element and
5 > 1 in the 5th element.

For 𝑎 ≥ 𝑏 (greater than or equal to) we use a >= b.

a >= b

[1] FALSE FALSE TRUE TRUE TRUE

The condition is satisfied in the 3rd element too, as 3 ≥ 3.

Similarly, for “less than” we use < and for less than or equal to we use <=:

a < b

29

30 CHAPTER 6. COMPARING VECTORS

[1] TRUE TRUE FALSE FALSE FALSE

a <= b

[1] TRUE TRUE TRUE FALSE FALSE

For 𝑎 = 𝑏, we use a == b. We need to use two equal signs, because if we did a
= b, it would replace the vector a with the vector b. Thus we use == to ask if
the respective elements of the two vectors are equal:

a == b

[1] FALSE FALSE TRUE FALSE FALSE

Thus 𝑎 = 𝑏 only in the 3rd element.

For 𝑎 ≠ 𝑏 (𝑎 not equal to 𝑏), we use a != b:

a != b

[1] TRUE TRUE FALSE TRUE TRUE

It’s also possible to compare a vector to a single number. For example, like:

a > 3

[1] FALSE FALSE FALSE TRUE TRUE

But what is not possible is comparing a vector with 5 elements to a vector with
only 4 elements. Either the two vectors should have the same length, or at least
one of them has only 1 element.

6.2 Comparing Logical Vectors
Consider the following two logical vectors:

a <- c(TRUE, TRUE, FALSE, FALSE)
b <- c(TRUE, FALSE, TRUE, FALSE)

If we want to know where both 𝑎 and 𝑏 are TRUE, we use the logical AND
operator &:

a & b

[1] TRUE FALSE FALSE FALSE

𝑎 and 𝑏 are only both TRUE in first element.

To see when either 𝑎 or 𝑏 are TRUE, we use the logical OR operator |:

a | b

[1] TRUE TRUE TRUE FALSE

6.2. COMPARING LOGICAL VECTORS 31

At least one of 𝑎 or 𝑏 are TRUE in all but the last element.

Suppose we wanted to return a logical vector which tells us when both 𝑎 and
𝑏 are FALSE. We can do that using the logical NOT operator !. First let’s see
what happens when we use the NOT operator on just a:

!a

[1] FALSE FALSE TRUE TRUE

Essentially it just flips the TRUEs to FALSEs and the FALSEs to TRUEs. To see
when both 𝑎 are 𝑏 are FALSE we do:

!a & !b

[1] FALSE FALSE FALSE TRUE

Thus, this only happens in the 4th element.

32 CHAPTER 6. COMPARING VECTORS

Chapter 7

R Scripts

Up to now we have been writing commands directly into the R console. This is
all fine if all you want to do is try out a few different simple commands. However,
when working on a project with some data you will often be executing many
commands and it’s easy to lose track of what you are doing. It’s also very easy
to make mistakes. R scripts are a solution to this problem. An R script is a
text file where you can write all of your commands in the order you want them
run, and then you can tell RStudio to run the entire file of commands. You can
also ask it to only run part of the file. This has many advantages:

• If you have run 10 commands to calculate something and then afterwards
you decide to change what happened in one of the earlier commands, you
would usually have to type all the commands again. In an R script you
would just need to edit the line with that command. So R scripts can save
you a lot of time.

• You or anyone else can easily reproduce your work by re-running the R
script.

• By having all the commands in a script you can more easily spot any
mistakes you might have.

• It is a way of saving your work.

Therefore it’s best practice to write your commands in an R script.

7.1 Creating a New R Script
To get started, go to File → New File → R Script in RStudio. You can also
use the Ctrl+Shift+N keyboard shortcut, or use the first toolbar button directly
under File.

Note to Mac Users: The keyboard shortcut will be Cmd+Shift+N on a Mac. In
general you will replace Ctrl with Cmd (and Alt with Option) in all keyboard

33

34 CHAPTER 7. R SCRIPTS

shortcuts that follow.

Test it out by typing a few commands into the script:

a <- 2
b <- 3
a + b

Note: The Alt + - shortcut to type <- also works in R scripts.

Your code in the R script should look like this:

Figure 7.1: R scripts in RStudio

7.2 Running the Commands in an R Script
There are several different ways to run the commands in an R script.

7.2.1 Selecting Lines and Running
One way to run these lines is to do the following:

1. Select the lines, either with your mouse or with the keyboard shortcut
Ctrl+A.

2. Running the selected lines, either with the Run toolbar button on top of
the R script, or with the keyboard shortcut Ctrl+Enter.

7.3. COMMENTING IN R 35

What is nice about this method is you can run a subset of the commands in
your R script. Instead of selecting all the lines, you just select the lines you
want to run. This can be useful if some of the lines in your code are slow to run
and you don’t need to run those lines again.

7.2.2 Sourcing
7.2.2.1 Sourcing with Echo

Another way to run the entire script is to source the script. You can do this
with the keyboard shortcut Ctrl+Shift+Enter or by clicking the down-arrow
next to the Source button at the top of the script, and clicking “Source with
Echo”.

With this approach you don’t need to select the lines first. It always runs the
entire file.

7.2.2.2 Sourcing without Echo

You will notice that when you run source, the source() command appears in
the console with the option echo = TRUE. The echo option prints all of the
commands and the output on the screen. It is also possible to source without
echo which then only prints what you want it to. This can be useful if you have
a very long script and only want to see the output of a few different things in it
when running it. You can do this by clicking the drop-down option next to the
Source button and clicking “Source”. You can also use the keyboard shortcut
Ctrl+Shift+S.

If we try this using the example script above we will see that it does not print
anything at all. We don’t see the output of a + b. To be able to print the
output of a line on the screen when using source() without echo, we need to
use the print() function. We need to change our script to be:

a <- 2
b <- 3
print(a + b)

When we source the script without echo we then see the output:

[1] 5

7.3 Commenting in R
7.3.1 Commenting as Annotation
When writing an R script it is good practice to add comments throughout to
explain what you are doing. This helps other people who are reading your code
to understand what you are doing and your intentions. Most of all, though, it
helps you to understand your own code when you look back at it after a few

36 CHAPTER 7. R SCRIPTS

months. To add a comment in R you simply need to type a # and anything you
write after the # is not run by R. For example:

Set values of a and b:
a <- 2
b <- 3
Compute the sum of a and b and print:
print(a + b)

[1] 5

You can also add comments after a command on the same line. Everything
before the # is run by R, and everything after and including the # is not run:

a <- 2 # set a equal to 2
b <- 3 # set b equal to 3
print(a + b) # Compute the sum of a and b and print:

[1] 5

7.3.2 Commenting to Not Run Certain Commands
If you have written some commands but you don’t want to run them when
you run/source your script, you can “comment them out”. You just put a #
before each line you don’t want to run to turn them into “comments”. You can
“comment out” many lines at the same time by selecting the lines you want to
comment out and using the Ctrl+Shift+C shortcut (or by going to Code →
Comment/Uncomment Lines). If you want to “uncomment” these lines, you just
need to select them and use the Ctrl+Shift+C shortcut again.

Chapter 8

Loading a CSV Dataset

Up to now we have been creating vectors and dataframes in R by hand. But
usually we will be working with bigger datasets that we want to read into R from
a file. R is able to read files from many different formats, such as text files and
Excel files. It can also read in datasets created by other software, such as Stata,
SPSS, or SAS. It can also read datasets straight from websites by providing the
URL instead of the file name.

We will start by learning how to read in a comma-separated values (CSV) dataset
from a CSV file. This is the most common format for datasets.

8.1 Structure of a CSV file
Before learning how to read a CSV file into R, let’s first understand the structure
of a CSV file.

We will do this with the example data.frame we saw before about how long it
took people to travel to class. The dataset can be represented by the following
table:

travel_mode time
train 25
train 20
walk 15
cycle 10
walk 17
train 30

A CSV file containing this dataset would look like this:

37

38 CHAPTER 8. LOADING A CSV DATASET

travel_mode,time
train,25
train,20
walk,15
cycle,10
walk,17
train,30

In a CSV dataset, the first row includes the names of the variables. Each of the
names are separated by commas, hence the name “comma-separated values”. So
the first line is travel_model,time. The second and following rows contain the
values of each of the variables, again separated by commas. Each line needs to
have the same number of commas so that the data can be read in as rectangular.

Commas as Part of Character Variables
Sometimes the values of the variables contain commas. For example, a travel
mode could be "train,cycle" if someone both cycled and took the train. If we
put in a line like train,cycle,28 in the CSV file, it would think that there are
3 data points for that line, when there should be only 2. In order to distinguish
when the comma is part of the data and when it separates columns, we can
put the character variables in double quotation marks. So we could more safely
store the dataset instead as follows:

"travel_mode","time"
"train",25
"train",20
"walk",15
"cycle",10
"walk",17
"train",30

Decimal Commas in CSV Files
Outside the Anglosphere (e.g. USA, UK, etc.), such as in the Netherlands, the
decimal separator is a comma instead of a point. For example, “two and a half”
is represented by 2,5 instead of 2.5. In this case we have two options:

1. We can surround all the numbers by double quotation marks.
2. We can use semicolons (;) to separate columns instead of commas, and

inform R that we want to use semicolons as separators instead of commas.

For assignments and exams, however, we will always be dealing with datasets
with period decimal separators.

8.2. READING IN A CSV FILE 39

8.2 Reading in a CSV file

We will learn how to read in the example dataset above from a file. To do so,
you need to first do the following steps to save it:

1. Copy the text of the CSV file above using the clipboard icon.
2. Open a new text file with File → New File → Text File.
3. Paste in the contents of your clipboard so the file has the data in it.
4. Go to File → Save As... and save the file as test.csv somewhere on

your computer.

Alternatively, download the file here.

Now, to read in the file into R, we need to tell R exactly where on your computer
the file is. We need to give R either the absolute path (or full path) to the file,
or the relative path from where R is currently working. We will now explain
what these are.

8.2.1 Absolute Paths

The absolute path is the full path to the file. On Windows, the full path is
something like C:\Users\username\Documents\test.csv. On a Mac, the full
path is something like /Users/username/Documents/test.csv. On Linux, the
full path is something like /home/username/Documents/test.csv.

There are many different ways you can find the full path of your file, but the
most convenient way for our purposes is to use the file.choose() command.
When you run the file.choose() command in your console, a file browser will
appear:

https://walshc.github.io/pqs/test.csv

40 CHAPTER 8. LOADING A CSV DATASET

Figure 8.1: file.choose() command

You then navigate to the file on your computer and press “Open”.

After doing so the file doesn’t actually open, but instead the full path of the file
will print in the console surrounded by quotes, which we can then use in our
code:

8.2. READING IN A CSV FILE 41

Figure 8.2: file.choose() command

We can then copy this (leaving out the [1]) and paste it into the read.csv()
command like this:

df <- read.csv("e:\\Users\\cbtwalsh\\Documents\\test.csv")

Running this will read in the file as a data.frame called df. We will then be
able to see df in our Environment and can view it by clicking on it there, or
else typing View(df) in the console.

Technical note: Windows users will notice that the file path used in the
read.csv() command uses “double backslashes” (\\) instead of single back-
slashes that you would normally see in a file path. We need to use these double
backslashes in R because R uses the single backslash as an “escape character”. To
create a single actual backslash in R we always need to use two backslashes. This
is another reason why using the file.choose() command to get the file path is
so useful. Otherwise we would have to add in all the extra backslashes in manu-
ally. It’s also possible to use forward slashes (/) instead, in which case we only
need to use one. For example: "e:/Users/cbtwalsh/Documents/test.csv".

8.2.2 Relative Paths
Reading in a file using the absolute path like above works well until you start
collaborating on a project with someone. Because you don’t have the same
username, the code that you write won’t work on their computer because the

42 CHAPTER 8. LOADING A CSV DATASET

file paths will be different. If two people are working on an R script together
on Dropbox, they will have to constantly change the the lines in the R scripts
that read in data.

A solution to this is to use relative paths for reading in data, or better yet,
projects in RStudio (see below).

At any given time, R has a current working directory which is a folder somewhere
on your computer. You can find out where this is using the getwd() command.
If the file test.csv is in the current working directory, you can read it in without
using the full path:

df <- read.csv("test.csv")

One way to change the current working directory to the location where you
have saved your data is to use the setwd() command. You can use the
file.choose() command like before to navigate to where that is. You would
then copy the full file path except for the part containing the file name. In the
example above, you would do the following:

setwd("e:\\Users\\cbtwalsh\\Documents\\")
df <- read.csv("test.csv")

This way, the collaborators would only need to set the current working directory
once, and then the read.csv() commands wouldn’t need to be changed. This
is useful when commands like this are run several times.

Suppose the dataset wasn’t in e:\Users\cbtwalsh\Documents, but rather
e:\Users\cbtwalsh\Documents\datasets, a sub-folder of the Docu-
ments folder. We can still read in the file when the current directory is
"e:\\Users\\cbtwalsh\\Documents\\" by using the relative path. That is,
we only need to give the path relative to the current working directory. In this
case, it would be "datasets/test.csv". Thus we could read in the data with:

setwd("e:\\Users\\cbtwalsh\\Documents\\")
df <- read.csv("datasets/test.csv")

8.2.3 RStudio Projects
If you are collaborating with someone, setting the current working directory
in the way above still requires changing a line when you run it on a different
computer, which is inconvenient. A way that avoids this entirely is the Project
feature in RStudio.

8.2.3.1 Creating an RStudio Project

To make use of this feature, we first need to create a project. The easiest way to
do this is to first ensure that the folder that you want to be the project already
exists somewhere on your computer. You can go to File → New Project...
(or click the Project toolbar button) select “Existing Directory” and then browse

8.2. READING IN A CSV FILE 43

to the location on your computer where it is. Then click “Create Project” and
R will switch to the project.

Here are screenshots of the steps:

Figure 8.3: Step 1: Click on the Project toolbar button.

44 CHAPTER 8. LOADING A CSV DATASET

Figure 8.4: Step 2: Click on “New Project”.

Figure 8.5: Step 3: Click on “Existing Directory”.

8.2. READING IN A CSV FILE 45

Figure 8.6: Step 4: Click “Browse”.

Figure 8.7: Step 5: Navigate to the project folder, click on it, and press “Open”.

46 CHAPTER 8. LOADING A CSV DATASET

Figure 8.8: Step 6: Click “Create Project”.

Figure 8.9: RStudio after creating the project.

8.2. READING IN A CSV FILE 47

R then switches to the project. We can see that:

• The Files tab now shows the files from the project folder.
• RStudio creates a file called my_new_project.Rproj in your project folder.
• We can also see that R has switched its current working directory to the

project folder. We can check this with the getwd() command:

Figure 8.10: Confirming the new working directory with getwd()

8.2.3.2 Reading in Data within an R Project

To read in a file in the project directory, such as test.csv, all we need to do is
this:

df <- read.csv("test.csv")

This way, we don’t need to find and paste in the full file path, we don’t need
to change the working directory, and if we are collaborating with someone we
don’t ever need to change any of the lines. There are also a number of other
(more advanced) benefits from using the Projects feature. For these reasons, I
recommend always using the Project feature in RStudio.

48 CHAPTER 8. LOADING A CSV DATASET

Chapter 9

R Packages

Up to now we have been using the standard functions that come by default with
R. However, certain operations that we want to do are not available as functions
in “base R” (the default functionality within R). Whenever this happens, we
need to load functions from other “packages” that allow us to do the operation
we want to do.

Anyone in the R-using community is free to write their own functions and pub-
lish them as packages for other people to use. This is great because it means
there is a package for almost everything you could think of doing. When aca-
demics develop new statistical models they often also publish an R package with
their journal publication, allowing other researchers to use their models easily.

In this chapter we will learn how to install and load packages through an exam-
ple.

9.1 Example Setting: Reading Excel Files
There is no function in base R that allows you to easily read in an Excel file
into R as a data.frame. One solution to this problem would be to export the
data from the Excel file into a CSV file. In Excel you would do File → Save
As and choose “CSV” under Save as type). Then we can just read in the data
using the read.csv() function we learned about in Chapter 8.

This approach would work fine in many circumstances, but you might have a
situation where you need to read many Excel files, or the Excel file is frequently
being updated. Then always having to convert the file to CSV becomes very
time-consuming and annoying. Also, we want to easily be able to replicate the
steps in our work. By having all the steps you do in your R script, anyone can
see exactly what you have done from the initial “raw data”. This makes your
work replicable and transparent.

49

50 CHAPTER 9. R PACKAGES

There are several R packages that allow you to read in Excel files, but we will
focus our attention on one of them: the readxl package.

To test this out, open Excel and populate it with the data below and save it as
test.xlsx in your project directory:

x y
3 5
8 7
2 1

9.2 Installing packages

9.2.1 From the command line

One way to install a package is from the command line using the
install.packages() function. You just need to put the package name
in quotation marks as the argument:

install.packages("readxl")

If you include this line in your R script, it will re-install the package every time
you run/source your code. For that reason it’s better to type it in the command
line.

9.2.2 From RStudio

In RStudio you can go to Tools → Install Packages..., type the name of
the packages in the “Packages” box, and press “Install” (leaving all the other
options as default). Here is an example:

9.3. LOADING PACKAGES 51

Figure 9.1: Installing a package using the RStudio dialog box.

Note: the computers on campus have a very wide range of packages already
installed. In the exam you won’t have to install any packages.

9.3 Loading packages
The function from the readxl package that we want to use is called
read_excel(). We want to use it to read in the test.xlsx file we created ear-
lier. If we try to use the function with the command read_excel("test.xlsx"),
we will get the following error:

This is because simply installing a package doesn’t mean the functions are
available to use. We need to load the package first. This is done using the
library() function. When using the library() function, we don’t need to put
the package name in quotes (but we still can – both work). This is unlike the
install.packages() function, where quotes are required.

After loading the package, we can read in the data from the Excel file:

library(readxl)

52 CHAPTER 9. R PACKAGES

df <- read_excel("test.xlsx")
df

A tibble: 4 x 2
x y

<dbl> <dbl>
1 1 2
2 4 4
3 5 6
4 3 3

Note that the read_excel() function read in the data as a tibble, which is
like a data.frame with a few extra features, like printing the dimensions of the
data. For this course we can just think of tibbles and dataframes as the same
thing. If you want to convert this tibble into a pure data.frame you can use
the data.frame() function around read_excel():

df <- data.frame(read_excel("test.xlsx"))
df

x y
1 1 2
2 4 4
3 5 6
4 3 3

Finally, note that if a package is not installed you will receive an error message.
For example, if you tried to load the readxl package before installing it you
would get the error:

Error in library(readxl) : there is no package called ‘readxl’

When you get this error, you know you need to install the package first.

9.4 Data Formats from other Software (Op-
tional)

In the future you may encounter data files stored in other formats saved from
other statistical software programs, such as Stata, SPSS or SAS. The haven
package in R is able to read in each of these. You can install the haven package
and load it like before:

install.packages("haven")
library(haven)

The functions to read in each of these data types are shown in the table below:

9.4. DATA FORMATS FROM OTHER SOFTWARE (OPTIONAL) 53

Statistical Software File extension Function from haven package
Stata .dta read_stata()
SPSS .sav read_spss()
SAS .sas7bdat read_sas()

In the assignments and exam, however, we will not use any of these three data
formats (.dta, .sav or .sas7bdat).

54 CHAPTER 9. R PACKAGES

Chapter 10

Dataframes: Indexing

In Chapter 4 and Chapter 8 we encountered dataframes. In the following three
chapters we will learn more about how to work with them. In this chapter will
focus on indexing with dataframes.

10.1 Running Example: The Eredivisie Results
from 2022/23

The dataset we will work with in the next three chapters contains the team,
number of wins, draws, losses, goals for, and goals against for all 18 teams and
38 matches from the 2022/23 season of the Eredivisie. The Eredivisie is the top
Dutch association football league. Here, “goals for” means the total number of
goals the team scored that season, whereas “goals against” is the total number
of goals the team conceded that season.

You can copy the code chunk below directly into R and it will read the data
in as a data.frame. This is another way of reading in datasets into R. You
can provide the contents of a CSV file directly into the read.csv() function we
have seen before instead of giving the filename. To do this we need to use the
text option. I am doing it this way to save you time having to copy the data
and save a new file on your computer, but it’s also good to see other ways of
reading in data.

df <- read.csv(text = "
team, wins, draws, losses, goals_for, goals_against
AZ, 20, 7, 7, 68, 35

Ajax, 20, 9, 5, 86, 38
Excelsior, 9, 5, 20, 32, 71
FC Emmen, 6, 10, 18, 33, 65

FC Groningen, 4, 6, 24, 31, 75

55

56 CHAPTER 10. DATAFRAMES: INDEXING

FC Twente, 18, 10, 6, 66, 27
FC Utrecht, 15, 9, 10, 55, 50

FC Volendam, 10, 6, 18, 42, 71
Feyenoord, 25, 7, 2, 81, 30

Fortuna Sittard, 10, 6, 18, 39, 62
Go Ahead Eagles, 10, 10, 14, 46, 56

NEC, 8, 15, 11, 42, 45
PSV, 23, 6, 5, 89, 40

RKC Waalwijk, 11, 8, 15, 50, 64
SC Cambuur, 5, 4, 25, 26, 69

Sparta Rotterdam, 17, 8, 9, 60, 37
Vitesse, 10, 10, 14, 45, 50

sc Heerenveen, 12, 10, 12, 44, 50
", strip.white = TRUE)

Note: The strip.white option I have used in this command is to remove the
empty spaces before and after the team names.

10.2 Indexing with Dataframes
In Chapter 5 we learned that we can get the 3rd element of a vector a with
a[3]. We can also extract elements of a dataframe in a similar way. To get the
2nd row and 3rd column of a dataframe, we do:

df[2, 3]

[1] 9

Inside the square bracket we first specify the rows, then after a comma we specify
the columns.

We can also put multiple indexes in each part. Suppose we want a smaller
dataframe of only the rows with Ajax, Feyenoord and PSV and only the columns
with the team name and number of wins. We first check which rows those teams
occupy (2, 9 and 13) and which columns those variables are in (1 and 2). We
then do:

df[c(2, 9, 13), c(1, 2)]

team wins
2 Ajax 20
9 Feyenoord 25
13 PSV 23

If we leave the columns part blank, it will give us the entire row. For example,
to get all the results for just Ajax we just get the 2nd row:

df[2,]

team wins draws losses goals_for goals_against

10.2. INDEXING WITH DATAFRAMES 57

2 Ajax 20 9 5 86 38

Similarly, if we leave the row part blank and only give column indices, it will
give us all rows for those columns. If we just want the column of wins we can
do:

df[, 2]

[1] 20 20 9 6 4 18 15 10 25 10 10 8 23 11 5 17 10 12

We can also get a column of a dataframe using the name of the variable. For
example, if we want to get the goals_for column, we can do:

df$goals_for

[1] 68 86 32 33 31 66 55 42 81 39 46 42 89 50 26 60 45 44

The dollar symbol here is what is called an extraction operator. The dollar
symbol is required because goals_for is part of df. The variable goals_for
is not a standalone vector in our environment. The df$ tells R to look for
goals_for inside df.

We can also use the name of the variable in the part where we specify the column
indices:

df[, "goals_for"]

[1] 68 86 32 33 31 66 55 42 81 39 46 42 89 50 26 60 45 44

We can also place multiple variable names in there:

df[, c("team", "goals_for")]

team goals_for
1 AZ 68
2 Ajax 86
3 Excelsior 32
4 FC Emmen 33
5 FC Groningen 31
6 FC Twente 66
7 FC Utrecht 55
8 FC Volendam 42
9 Feyenoord 81
10 Fortuna Sittard 39
11 Go Ahead Eagles 46
12 NEC 42
13 PSV 89
14 RKC Waalwijk 50
15 SC Cambuur 26
16 Sparta Rotterdam 60
17 Vitesse 45
18 sc Heerenveen 44

58 CHAPTER 10. DATAFRAMES: INDEXING

Finally, another way to get a single variable from a dataframe is to place the
name of the variable in quotes inside double square brackets:

df[["goals_for"]]

[1] 68 86 32 33 31 66 55 42 81 39 46 42 89 50 26 60 45 44

We can also subset rows of a dataframe using logical operators, just like we saw
in Chapter 5. For example, suppose we wanted to only see the results for teams
that won at least 20 matches. The following will return a logical vector which
is TRUE if the team won at least 20 matches, and FALSE if they won 19 or fewer
matches:

df$wins >= 20

[1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[13] TRUE FALSE FALSE FALSE FALSE FALSE

The first two are TRUE, because AZ and Ajax won at least 20 matches (they both
won exactly 20). The next two are FALSE because Excelsior and FC Emmen
won less than 20 matches (they won 9 and 6, respectively).

If we use this inside the square brackets where we specify the row indices, we
get the desired result:

df[df$wins >= 20,]

team wins draws losses goals_for goals_against
1 AZ 20 7 7 68 35
2 Ajax 20 9 5 86 38
9 Feyenoord 25 7 2 81 30
13 PSV 23 6 5 89 40

Chapter 11

Dataframes: Creating
Variables

Here we will continue to work with the example dataframe from Chapter 10:

df <- read.csv(text = "
team, wins, draws, losses, goals_for, goals_against
AZ, 20, 7, 7, 68, 35

Ajax, 20, 9, 5, 86, 38
Excelsior, 9, 5, 20, 32, 71
FC Emmen, 6, 10, 18, 33, 65

FC Groningen, 4, 6, 24, 31, 75
FC Twente, 18, 10, 6, 66, 27
FC Utrecht, 15, 9, 10, 55, 50

FC Volendam, 10, 6, 18, 42, 71
Feyenoord, 25, 7, 2, 81, 30

Fortuna Sittard, 10, 6, 18, 39, 62
Go Ahead Eagles, 10, 10, 14, 46, 56

NEC, 8, 15, 11, 42, 45
PSV, 23, 6, 5, 89, 40

RKC Waalwijk, 11, 8, 15, 50, 64
SC Cambuur, 5, 4, 25, 26, 69

Sparta Rotterdam, 17, 8, 9, 60, 37
Vitesse, 10, 10, 14, 45, 50

sc Heerenveen, 12, 10, 12, 44, 50
", strip.white = TRUE)

We can see that we are missing some of the columns we usually see when we
look at the standings of an association football league. These are:

1. The goal difference.

59

60 CHAPTER 11. DATAFRAMES: CREATING VARIABLES

2. The number of points the team has.
3. The rankings of the teams in the league.
4. The relegation status of each team.

What we will learn in this chapter is how to create these variables from the
existing ones we already have.

11.1 Goal Difference
The goal difference in association football is “goals for” minus “goals
against”. To get the goal difference then, we subtract df$goals_against from
df$goals_for:

df$goals_for - df$goals_against

[1] 33 48 -39 -32 -44 39 5 -29 51 -23 -10 -3 49 -14 -43 23 -5 -6

This prints out the goal difference for all 18 teams, but it does not save it in the
dataset. To do that, we need to assign this output to a new variable in df. We
do that using the dollar symbol again:

df$goal_diff <- df$goals_for - df$goals_against

Now when we look at our dataset, there is a new variable in it:

df

team wins draws losses goals_for goals_against goal_diff
1 AZ 20 7 7 68 35 33
2 Ajax 20 9 5 86 38 48
3 Excelsior 9 5 20 32 71 -39
4 FC Emmen 6 10 18 33 65 -32
5 FC Groningen 4 6 24 31 75 -44
6 FC Twente 18 10 6 66 27 39
7 FC Utrecht 15 9 10 55 50 5
8 FC Volendam 10 6 18 42 71 -29
9 Feyenoord 25 7 2 81 30 51
10 Fortuna Sittard 10 6 18 39 62 -23
11 Go Ahead Eagles 10 10 14 46 56 -10
12 NEC 8 15 11 42 45 -3
13 PSV 23 6 5 89 40 49
14 RKC Waalwijk 11 8 15 50 64 -14
15 SC Cambuur 5 4 25 26 69 -43
16 Sparta Rotterdam 17 8 9 60 37 23
17 Vitesse 10 10 14 45 50 -5
18 sc Heerenveen 12 10 12 44 50 -6

11.2. TOTAL POINTS 61

11.2 Total Points
In association football leagues, a team gets 3 points for a win and 1 point for a
draw. They get 0 points for a loss. The formula for calculating the total number
of points is then:

Points = 3 × Wins + 1 × Draws + 0 × Losses

In our data we observe the number of wins, draws and losses, but not the total
points. So we need to create this variable from the other ones using the formula
above. We can do this with:

df$total_points <- 3 * df$wins + df$draws

We didn’t need to include df$losses in the formula because when we multiply
it by zero it won’t make a difference.

Let’s take a look at what we’ve created:

df[, c("team", "wins", "draws", "losses", "total_points")]

team wins draws losses total_points
1 AZ 20 7 7 67
2 Ajax 20 9 5 69
3 Excelsior 9 5 20 32
4 FC Emmen 6 10 18 28
5 FC Groningen 4 6 24 18
6 FC Twente 18 10 6 64
7 FC Utrecht 15 9 10 54
8 FC Volendam 10 6 18 36
9 Feyenoord 25 7 2 82
10 Fortuna Sittard 10 6 18 36
11 Go Ahead Eagles 10 10 14 40
12 NEC 8 15 11 39
13 PSV 23 6 5 75
14 RKC Waalwijk 11 8 15 41
15 SC Cambuur 5 4 25 19
16 Sparta Rotterdam 17 8 9 59
17 Vitesse 10 10 14 40
18 sc Heerenveen 12 10 12 46

11.3 Team Ranking
At the moment, the data are sorted alphabetically by team. But usually we see
them sorted by their ranking in the league. What we will do now is sort the
data by their ranking in the league, and also create a variable that shows the
team’s rank in the league.

62 CHAPTER 11. DATAFRAMES: CREATING VARIABLES

In association football leagues, teams are ranked by the number of points they
accumulated throughout the season. If two teams have the same number of
points, we rank teams by their goal difference.1

We can create a ranking by sorting the data by the number of points and
goal difference. We can do that using the order() function in R. The first
argument is what we want to sort by (total points). For breaking ties we can
include additional arguments. By default, order() sorts ascending so to sort
descending we need to use the option decreasing = TRUE.

If we use the order function by itself, we get:

order(df$total_points, decreasing = TRUE)

[1] 9 13 2 1 6 16 7 18 14 11 17 12 8 10 3 4 15 5

The 9 at the beginning means that the team with the most points is the one in
the 9th position. Let’s check which one that was:

df[9,]

team wins draws losses goals_for goals_against goal_diff total_points
9 Feyenoord 25 7 2 81 30 51 82

This is correct, because Feyenoord won the competition. The 2nd number 13
means the team in the 13th position (PSV) came second.

To actually sort the data, we need to use this function when specifying the row
indices:

df <- df[order(df$total_points, decreasing = TRUE),]
df[, c("team", "total_points", "goal_diff")]

team total_points goal_diff
9 Feyenoord 82 51
13 PSV 75 49
2 Ajax 69 48
1 AZ 67 33
6 FC Twente 64 39
16 Sparta Rotterdam 59 23
7 FC Utrecht 54 5
18 sc Heerenveen 46 -6
14 RKC Waalwijk 41 -14
11 Go Ahead Eagles 40 -10
17 Vitesse 40 -5
12 NEC 39 -3

1If the date is 01/01/69, the format %d/%m/%y will interpret it as January 1 1969. But if
the date is 01/01/68, it will interpret it as January 1 2068. All short-format years after 69
are put in the 1900s and all short-format years before 69 are put in the 2000s. You don’t need
to remember these details for the exam though because we won’t ever use dates outside of
1969-2068.

11.3. TEAM RANKING 63

8 FC Volendam 36 -29
10 Fortuna Sittard 36 -23
3 Excelsior 32 -39
4 FC Emmen 28 -32
15 SC Cambuur 19 -43
5 FC Groningen 18 -44

If there are ties in total points, the function will keep the initial ordering. Here,
both Go Ahead Eagles and Vitesse have 40 points, but Vitesse has a better
goal difference (-5 instead of -10). But for the ranking to be correct, we need
Vitesse to be ahead of Go Ahead Eagles. To do this, we add df$goal_diff
as another argument to the order() function. This orders by goal difference
whenever there is a tie in points:

df <- df[order(df$total_points, df$goal_diff, decreasing = TRUE),]
df[, c("team", "total_points", "goal_diff")]

team total_points goal_diff
9 Feyenoord 82 51
13 PSV 75 49
2 Ajax 69 48
1 AZ 67 33
6 FC Twente 64 39
16 Sparta Rotterdam 59 23
7 FC Utrecht 54 5
18 sc Heerenveen 46 -6
14 RKC Waalwijk 41 -14
17 Vitesse 40 -5
11 Go Ahead Eagles 40 -10
12 NEC 39 -3
10 Fortuna Sittard 36 -23
8 FC Volendam 36 -29
3 Excelsior 32 -39
4 FC Emmen 28 -32
15 SC Cambuur 19 -43
5 FC Groningen 18 -44

Now we get the right ordering. We can also confirm that there are no ties in
both total points and goal difference.

To create the ranking variable we can simply create a sequence from 1 to 18.
We can do this with 1:18. But another way to get 18 is to use nrow(df), which
is the number of rows in df:

df$ranking <- 1:nrow(df)
df[, c("team", "total_points", "goal_diff", "ranking")]

team total_points goal_diff ranking
9 Feyenoord 82 51 1

64 CHAPTER 11. DATAFRAMES: CREATING VARIABLES

13 PSV 75 49 2
2 Ajax 69 48 3
1 AZ 67 33 4
6 FC Twente 64 39 5
16 Sparta Rotterdam 59 23 6
7 FC Utrecht 54 5 7
18 sc Heerenveen 46 -6 8
14 RKC Waalwijk 41 -14 9
17 Vitesse 40 -5 10
11 Go Ahead Eagles 40 -10 11
12 NEC 39 -3 12
10 Fortuna Sittard 36 -23 13
8 FC Volendam 36 -29 14
3 Excelsior 32 -39 15
4 FC Emmen 28 -32 16
15 SC Cambuur 19 -43 17
5 FC Groningen 18 -44 18

You can confirm that this is the correct points, goal difference and rankings by
checking the table here.

11.4 Relegation Status
The last variable we will create is the relegation status. In the Eredivisie, the
teams ranked 17th and 18th are automatically relegated to the lower “Keuken
Kampioen” (Kitchen Champion) league (where Tilburg’s Willem II competed
that year). The 16th team enters into a playoff with teams in the Keuken
Kampioen league. We will create a character variable with this information.

To do this we first create a variable which is blank everywhere: (""). We then
fill in values depending on the rank of the team using indexing:

df$relegation_status <- ""
df$relegation_status[df$ranking < 16] <- "No relegation"
df$relegation_status[df$ranking == 16] <- "Relegation playoffs"
df$relegation_status[df$ranking == 17 |

df$ranking == 18] <- "Automatic relegation"
df[, c("team", "ranking", "relegation_status")]

team ranking relegation_status
9 Feyenoord 1 No relegation
13 PSV 2 No relegation
2 Ajax 3 No relegation
1 AZ 4 No relegation
6 FC Twente 5 No relegation
16 Sparta Rotterdam 6 No relegation
7 FC Utrecht 7 No relegation

https://www.eurosport.nl/voetbal/eredivisie/2022-2023/standen.shtml

11.4. RELEGATION STATUS 65

18 sc Heerenveen 8 No relegation
14 RKC Waalwijk 9 No relegation
17 Vitesse 10 No relegation
11 Go Ahead Eagles 11 No relegation
12 NEC 12 No relegation
10 Fortuna Sittard 13 No relegation
8 FC Volendam 14 No relegation
3 Excelsior 15 No relegation
4 FC Emmen 16 Relegation playoffs
15 SC Cambuur 17 Automatic relegation
5 FC Groningen 18 Automatic relegation

For teams in rank 17 or 18, we use the logical OR operator: If the ranking is
equal to 17 or equal to 18, we set the status to “Automatic relegation”.

Writing df$ranking == 17 | df$ranking == 18 inside the brackets is quite
long. If you had more numbers you wanted to compare the ranking to, it would
become a really long command. Fortunately R has a special operator we can
use as a shortcut: the %in% operator. We can use the %in% operator to do the
same thing as follows:

df$relegation_status[df$ranking %in% 17:18] <- "Automatic relegation"

What is the %in% doing? When we write a %in% b we are checking for each
element in a if there is a matching element somewhere in b. To see this at work,
consider the following example:

a <- 1:6
b <- c(3, 5, 7)
a %in% b

[1] FALSE FALSE TRUE FALSE TRUE FALSE

Here the 3rd and 5th element are TRUE, because the 3rd and 5th element of a
(which are 3 and 5) are somewhere in b (3 and 5 are in b, but 1, 2, 4 and 6
aren’t). An equivalent way of doing it (but with more typing) would be to see
if 𝑎 = 3 or 𝑎 = 5 or 𝑎 = 7 for each element (i.e. check for a match in any of the
elements of b):

a == b[1] | a == b[2] | a == b[3]

[1] FALSE FALSE TRUE FALSE TRUE FALSE

In the example above, we had df$ranking %in% 17:18. This returns TRUE if
the team’s ranking was one of 17 or 18 and is FALSE otherwise.

66 CHAPTER 11. DATAFRAMES: CREATING VARIABLES

Chapter 12

Dataframes: Summary
Statistics

In this chapter we will learn some techniques for summarizing a dataframe using
the same running example.

We load up the data and create some of the missing variables again (summarizing
what we did in the last chapter):

df <- read.csv(text = "
team, wins, draws, losses, goals_for, goals_against
AZ, 20, 7, 7, 68, 35

Ajax, 20, 9, 5, 86, 38
Excelsior, 9, 5, 20, 32, 71
FC Emmen, 6, 10, 18, 33, 65

FC Groningen, 4, 6, 24, 31, 75
FC Twente, 18, 10, 6, 66, 27
FC Utrecht, 15, 9, 10, 55, 50

FC Volendam, 10, 6, 18, 42, 71
Feyenoord, 25, 7, 2, 81, 30

Fortuna Sittard, 10, 6, 18, 39, 62
Go Ahead Eagles, 10, 10, 14, 46, 56

NEC, 8, 15, 11, 42, 45
PSV, 23, 6, 5, 89, 40

RKC Waalwijk, 11, 8, 15, 50, 64
SC Cambuur, 5, 4, 25, 26, 69

Sparta Rotterdam, 17, 8, 9, 60, 37
Vitesse, 10, 10, 14, 45, 50

sc Heerenveen, 12, 10, 12, 44, 50
", strip.white = TRUE)

67

68 CHAPTER 12. DATAFRAMES: SUMMARY STATISTICS

Create goal difference:
df$goal_diff <- df$goals_for - df$goals_against

Create total points scored over the season:
df$total_points <- 3 * df$wins + df$draws

Order teams by season rank and create season ranking variable:
df <- df[order(df$total_points, df$goal_diff, decreasing = TRUE),]
df$ranking <- 1:nrow(df)

12.1 summary() for Dataframes
To get a broad overview of a dataset, you can use the summary() function
that we used in Chapter 5 before for vectors. When we use this function on a
dataframe, it will show the summary statistics for all variables in the dataframe:

summary(df)

team wins draws losses
Length:18 Min. : 4.00 Min. : 4.000 Min. : 2.00
Class :character 1st Qu.: 9.25 1st Qu.: 6.000 1st Qu.: 7.50
Mode :character Median :10.50 Median : 8.000 Median :13.00

Mean :12.94 Mean : 8.111 Mean :12.94
3rd Qu.:17.75 3rd Qu.:10.000 3rd Qu.:18.00
Max. :25.00 Max. :15.000 Max. :25.00

goals_for goals_against goal_diff total_points
Min. :26.00 Min. :27.00 Min. :-44.0 Min. :18.00
1st Qu.:39.75 1st Qu.:38.50 1st Qu.:-27.5 1st Qu.:36.00
Median :45.50 Median :50.00 Median : -5.5 Median :40.50
Mean :51.94 Mean :51.94 Mean : 0.0 Mean :46.94
3rd Qu.:64.50 3rd Qu.:64.75 3rd Qu.: 30.5 3rd Qu.:62.75
Max. :89.00 Max. :75.00 Max. : 51.0 Max. :82.00

ranking
Min. : 1.00
1st Qu.: 5.25
Median : 9.50
Mean : 9.50
3rd Qu.:13.75
Max. :18.00

For the team name, it just says character, because we cannot find the mean
of a character. The only information we get is the number of observations (18).
All the other variables are numeric, and the summary statistics are shown for
each one.

12.2. HEAD() AND TAIL() 69

12.2 head() and tail()
Another way to get a broad overview of a dataset is to just “eyeball” it by
displaying it in the console with df, or browsing it in RStudio with View(df).
For datasets with many observations, however, it may be easier to just look at
the first few rows. We can do that with the head() function:

head(df)

team wins draws losses goals_for goals_against goal_diff
9 Feyenoord 25 7 2 81 30 51
13 PSV 23 6 5 89 40 49
2 Ajax 20 9 5 86 38 48
1 AZ 20 7 7 68 35 33
6 FC Twente 18 10 6 66 27 39
16 Sparta Rotterdam 17 8 9 60 37 23

total_points ranking
9 82 1
13 75 2
2 69 3
1 67 4
6 64 5
16 59 6

By default, head() shows the first 6 rows. We can look at a different number
by specifying the option n. For example, to see the first 4 rows we would do:

head(df, n = 4)

team wins draws losses goals_for goals_against goal_diff total_points
9 Feyenoord 25 7 2 81 30 51 82
13 PSV 23 6 5 89 40 49 75
2 Ajax 20 9 5 86 38 48 69
1 AZ 20 7 7 68 35 33 67

ranking
9 1
13 2
2 3
1 4

The function tail() does the exact opposite. It shows the last n rows of the
dataset, with 6 rows by default. To see the two teams that are automatically
relegated (the bottom 2) we would do:

tail(df, n = 2)

team wins draws losses goals_for goals_against goal_diff
15 SC Cambuur 5 4 25 26 69 -43
5 FC Groningen 4 6 24 31 75 -44

total_points ranking

70 CHAPTER 12. DATAFRAMES: SUMMARY STATISTICS

15 19 17
5 18 18

12.3 nrow() and ncol()
Something we are often interested in is the total number of observations. We
can find this by checking the number of rows in the dataframe with the nrow()
function. In this case it is the number of teams. The number of columns (found
with ncol()) shows the total number of variables.

nrow(df)

[1] 18

ncol(df)

[1] 9

If we want to quickly find both of these numbers, we can also use the dim()
function, which shows the dimensions of the dataframe (first the number of rows,
then the number of columns):

dim(df)

[1] 18 9

12.4 names()
Sometimes we are just interested in what variables are included in the dataset.
To see this, we can use the names() function:

names(df)

[1] "team" "wins" "draws" "losses"
[5] "goals_for" "goals_against" "goal_diff" "total_points"
[9] "ranking"

Chapter 13

Data Cleaning

Often when we get a dataset we need to analyze, it’s not always exactly struc-
tured and formatted in a way that we can immediately work with it. Here are
some examples of this:

• The data don’t start at the top of the file because the first few rows contain
some other information.

• The dates are not formatted correctly.
• Numbers are interpreted as characters.
• The data contain extra columns that we don’t want.
• There are rows with missing data that we want to omit.
• The variable names are not what we want them to be.

In these cases we need to clean the data before we can work with it. By cleaning
we don’t mean modifying the underlying data. It just means bringing the dataset
into a format such that we can more easily work with it in R.

Some datasets are “dirtier” than others, sometimes so “dirty” that it can take
weeks or even months to clean. Fortunately we will stick to “lightly unkempt”
data for this course that can be cleaned only a few lines of code.

In this chapter we will learn some basic data cleaning techniques to deal with
the 6 example issues listed above. We will do this using stock price data for the
company ASML from the Amsterdam Stock Exchange.

Download the following file: asml-trades.csv and put it in your project folder.
The variable names and meanings are:

• Date: The date the data from that row are from.
• Open: The opening price of the stock on that day.
• High: The highest price the stock traded at on that day.
• Low: The lowest price the stock traded at on that day.
• Last: The price of the last-traded stock at on that day.

71

https://walshc.github.io/pqs/asml-trades.csv

72 CHAPTER 13. DATA CLEANING

• Close: The closing price of the stock on that day.
• Number.of.Shares: The number of shares traded that day.
• Number.of.Trades: The number of trades made that day.

13.1 Skipping Rows
Before reading the dataset into R, let’s take a quick look at the text in the file
itself. In the Files tab in RStudio, click on the asml-trades.csv file and click
“View File”. The text of the file opens in RStudio. The first few lines should
look like:

Historical Data,,,,,,,,
From 2021-08-31 to 2023-08-30,,,,,,,,
NL0010273215,,,,,,,,
Date,Open,High,Low,Last,Close,Number of Shares,Number of Trades,Print table
31/8/2021,713.8,717.7,699.9,704.5,704.5,978555,36599,
1/9/2021,712.4,715.5,706.4,714.2,714.2,674506,38527,
2/9/2021,713.9,723.4,708.4,722.2,722.2,533840,29229,

We immediately notice that the first 3 rows contain information about the data
that we don’t want to include in our dataframe. The variable names are on line
4 instead of line 1.

One option would be to delete those rows and save the file. However, it is bad
practice to directly edit a data file. One should always work with the raw CSV
file as it was downloaded. This makes it easier to reproduce your work and show
your steps through your R script. Fortunately the read.csv() function has an
option to skip rows. We can use this with:

df <- read.csv("asml-trades.csv", skip = 3)

We could also have read in the data directly from the URL with:

df <- read.csv("https://walshc.github.io/pqs/asml-trades.csv", skip = 3)

This way we wouldn’t have to set up an RStudio project or change the working
directory.

Let’s take a first look at the data with summary():

summary(df)

Date Open High Low
Length:521 Min. :394.7 Min. :408.2 Min. :375.8
Class :character 1st Qu.:535.5 1st Qu.:545.5 1st Qu.:525.8
Mode :character Median :592.1 Median :597.4 Median :582.5

Mean :589.2 Mean :597.5 Mean :579.6
3rd Qu.:645.5 3rd Qu.:652.5 3rd Qu.:636.1
Max. :770.5 Max. :777.5 Max. :764.2
NA's :6 NA's :6 NA's :6

13.2. FORMATTING DATES 73

Last Close Number.of.Shares Number.of.Trades
Min. :397.4 Min. :397.4 Length:521 Length:521
1st Qu.:535.9 1st Qu.:535.9 Class :character Class :character
Median :589.4 Median :589.4 Mode :character Mode :character
Mean :588.4 Mean :588.4
3rd Qu.:644.0 3rd Qu.:644.0
Max. :770.5 Max. :770.5
NA's :6 NA's :6
Print.table
Mode:logical
NA's:521

From this we can see a few problems:

• From the summary of the Date variable, we can see that R read it in as a
character. It did not recognize that it was a date.

• The variables Open, High, Low, Last and Close contain 6 NAs. NA stands
for “Not Available” and is what R uses to represent missing values.

• For the variables Number.of.Shares and Number.of.Trades, we can see
that they were read in as characters instead of numbers.

• Print.table has 521 NAs (all values are NA), thus this variable is useless
and should be deleted.

• We also want to change some of the variable names and also change the
names to lower case and replace the dots (.) with underscores (_).

We will work through these problems for the rest of this chapter.

13.2 Formatting Dates
13.2.1 Converting Dates in the ASML Example
We will start by converting the date variable from a character to a date variable.
This is useful for doing operations with the date (such as subsetting the data
on observations before/after a particular date) and for plotting.

We can convert the character to a date using the as.Date() function. The first
argument of the function is the vector of dates that need to be converted, and
the format argument specifies the format the date is written in. Let’s see what
format the dates are written in using the head() command to see the first few
rows:

head(df$Date)

74 CHAPTER 13. DATA CLEANING

[1] "31/8/2021" "1/9/2021" "2/9/2021" "3/9/2021" "6/9/2021" "7/9/2021"

When we look at the data, we can see that the format is dd/mm/yyyy. To
specify this we need to write format = "%d/%m/%Y".

df$Date <- as.Date(df$Date, format = "%d/%m/%Y")

We can check what this did with the head() command again:

head(df$Date)

[1] "2021-08-31" "2021-09-01" "2021-09-02" "2021-09-03" "2021-09-06"
[6] "2021-09-07"

We can see that when R has dates correctly formatted they show up in the
format yyyy-mm-dd. This is the default format.

Now that the date is formatted correctly, the summary() command shows the
first and last dates in the data (31 August 2021 and 29 August 2023):

summary(df$Date)

Min. 1st Qu. Median Mean 3rd Qu. Max.
"2021-08-31" "2022-03-01" "2022-08-30" "2022-08-29" "2023-02-28" "2023-08-29"

13.2.2 Converting Dates from Other Formats
Dates in the Netherlands are typically written like dd-mm-yyyy. If it was the
case we would instead do "%d-%m-%Y". You can try this out with:

as.Date("1-9-2023", format = "%d-%m-%Y")

[1] "2023-09-01"

If the dates were in mm/dd/yyyy format, as is typical in USA, we would do
"%m/%d/%Y".

as.Date("12/31/2022", format = "%m/%d/%Y")

[1] "2022-12-31"

Sometimes we omit the century from years. We might write the 1st of September
2023 as 01/09/23. In R we need to use %y instead of %Y for these abbreviated
years:1

as.Date("01/09/22", format = "%d/%m/%y")

[1] "2022-09-01"
1If the date is 01/01/69, the format %d/%m/%y will interpret it as January 1 1969. But if

the date is 01/01/68, it will interpret it as January 1 2068. All short-format years after 69
are put in the 1900s and all short-format years before 69 are put in the 2000s. You don’t need
to remember these details for the exam though because we won’t ever use dates outside of
1969-2068.

13.3. CONVERTING CHARACTERS TO NUMBERS 75

13.2.3 Converting Dates with Month Names (Optional)
Warning in Sys.setlocale("LC_TIME", "en_US.UTF-8"): OS reports request to set
locale to "en_US.UTF-8" cannot be honored

Sometimes the dates have the month name in words. To convert this we need
to use the %b option for abbreviated month names and %B for full month names:

as.Date("Sep 1 2023", format = "%b %d %Y")

[1] NA

as.Date("January 1 2023", format = "%B %d %Y")

[1] NA

Note that if your computer is not in English it might not work as R expects
to read months in the language of your computer. To get around this, you can
first set the language for dates to English using the Sys.setlocale() function
before formatting the dates. Because of the complications with month names
in different languages, I will not ask questions on the assignments or exam
involving this. I am just providing this information in case it may be useful for
you later.

13.3 Converting Characters to Numbers
For the variables Number.of.Shares and Number.of.Trades, we saw that they
were read in as characters instead of numbers. Usually this happens when there
are some letters or other non-numeric symbols (like the % symbol) somewhere
in the data. This is because all elements of vectors in R (the individual columns
of a data.frame) must have the same data type. If there are any character
elements in a vector, the remaining elements are coerced into characters.

If we look through the data we can see that some rows have "None" written
instead of NA.2

To do this conversion we first replace the "None" values with NA. We do this by
assigning NA to the subset of values where df$Number.of.Shares == "None":3

df$Number.of.Shares[df$Number.of.Shares == "None"] <- NA

Once we have done this we use the as.numeric() function to convert the values
from character to numeric:

df$Number.of.Shares <- as.numeric(df$Number.of.Shares)
2As a shortcut, we could have found all the non-numeric characters in a variable using the

following command: unique(grep("[^0-9]", df$Number.of.Trades, value = TRUE)). You
don’t need to remember this command for the exam.

3We could also have replaced all elements with non-numeric characters without
knowing what they are with the following: df$Number.of.Shares[grepl("[^0-9]",
df$Number.of.Trades)] <- NA. You don’t need to remember this command for the exam.

76 CHAPTER 13. DATA CLEANING

Now when we summarize we see that it’s treated as a number:

summary(df$Number.of.Shares)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
84141 571178 711067 783291 916000 2932273 6

We can do the same with the Number.of.Trades. We are also able to do this
skipping the step of converting the "None" to NA:

df$Number.of.Trades <- as.numeric(df$Number.of.Trades)

Warning: NAs introduced by coercion

When we do this, however, we see that R warned us that it converted some
observations to NA. A warning is different to an error in that R still completes
the operation (in an error it will just stop). But it is warning us because we
may not have expected some values to be forced to NA. In general it is better
to code in a way that doesn’t generate warnings, so I recommend setting the
non-numeric values to NA first.

13.4 Deleting columns
The last column of the data, Print.table, contains no data. It has NA for all
rows.

To delete a variable we write over the variable with NULL. This essentially re-
places it with nothing:

df$Print.table <- NULL

An alternative approach would be to use the column index of the variable we
want to drop. Print.table is the 9th column in the data, and to drop the 9th
column we could use:

df <- df[, -9]

If we view the data in RStudio, we can see that it is now deleted.

13.5 Dropping rows with missing data
Let’s take a look at how our data look now:

summary(df)

Date Open High Low
Min. :2021-08-31 Min. :394.7 Min. :408.2 Min. :375.8
1st Qu.:2022-03-01 1st Qu.:535.5 1st Qu.:545.5 1st Qu.:525.8
Median :2022-08-30 Median :592.1 Median :597.4 Median :582.5
Mean :2022-08-29 Mean :589.2 Mean :597.5 Mean :579.6
3rd Qu.:2023-02-28 3rd Qu.:645.5 3rd Qu.:652.5 3rd Qu.:636.1

13.5. DROPPING ROWS WITH MISSING DATA 77

Max. :2023-08-29 Max. :770.5 Max. :777.5 Max. :764.2
NA's :6 NA's :6 NA's :6

Last Close Number.of.Shares Number.of.Trades
Min. :397.4 Min. :397.4 Min. : 84141 Min. : 4398
1st Qu.:535.9 1st Qu.:535.9 1st Qu.: 571178 1st Qu.: 26290
Median :589.4 Median :589.4 Median : 711067 Median : 33375
Mean :588.4 Mean :588.4 Mean : 783291 Mean : 35830
3rd Qu.:644.0 3rd Qu.:644.0 3rd Qu.: 916000 3rd Qu.: 42707
Max. :770.5 Max. :770.5 Max. :2932273 Max. :108957
NA's :6 NA's :6 NA's :6 NA's :6

We can see that there are 6 NAs for all variables except the Date variable. If
we scroll through the data we notice that 6 rows with NAs are the same for all
variables. Let’s have a look at what dates these are. We can do this using the
is.na() function. This function, when applied to a vector, returns TRUE if the
element is NA and FALSE if not. To see the dates when the variables are missing,
we can do:

df$Date[is.na(df$Open)]

[1] "2022-04-15" "2022-04-18" "2022-12-26" "2023-04-07" "2023-04-10"
[6] "2023-05-01"

We can see that the missings were:

• 2022-04-15: Good Friday
• 2022-04-18: Easter Monday (Tweede paasdag)
• 2022-12-26: Day after Christmas (Tweede kerstdag)
• 2023-04-07: Good Friday
• 2023-04-10: Easter Monday (Tweede paasdag)
• 2023-05-01: Labor Day (Dag van de Arbeid)

These are weekdays where the Amsterdam stock market is closed. We can drop
rows with any missing values using the na.omit() function. I will print the
number of rows in df before and after the operation to show what is happening:

nrow(df)

[1] 521

df <- na.omit(df)
nrow(df)

[1] 515

We can see that we fell from 521 observations to 515 after deleting the 6 holidays
from the data.

78 CHAPTER 13. DATA CLEANING

13.6 Renaming Variables
Although the variable names are quite okay, suppose we wanted to change some
of them.

Suppose we wanted to change the name of "Number.of.Shares" to
"num_shares" to make it shorter to type, and to replace the dot with
an underscore. Because we know it occupies the 7th column, we can change
the name with:

names(df)[7] <- "num_shares"

Suppose we also wanted to change the name of "Number.of.Trades" to
"num_trades". Counting columns like we did above increases our chances of
making a mistake (besides, we need to do a lot of counting). We can instead
change the name using the old name as follows:

names(df)[names(df) == "Number.of.Trades"] <- "num_trades"

How this works is names(df) == "Number.of.Trades" is TRUE only in the 8th
column when the name is actually "Number.of.Trades", and so it changes the
name of only that column.

We can also change the names of multiple columns at the same time. Suppose
we wanted to change Open, High, Low and Last to lower case. We can do:

names(df)[2:5] <- c("open", "high", "low", "last")

If we wanted to quickly change all variable names to lower case, we can use the
tolower() function. The tolower() function converts upper case characters
to lower case:

test <- c("hello!", "HELLO!", "Hello!", "HeLlO!")
tolower(test)

[1] "hello!" "hello!" "hello!" "hello!"

Let’s use it to change the names of the data set:

names(df) <- tolower(names(df))
names(df)

[1] "date" "open" "high" "low" "last"
[6] "close" "num_shares" "num_trades"

Chapter 14

Introduction to Plotting

14.1 Introduction
We will now learn some techniques to visualize your data. We will learn how to
create histograms, bar charts, line plots, scatter plots, among others, and how
to customize them.

Base R (R without any packages) has some basic plotting functions. These are
easy to use but they are not easily customizable and don’t look very elegant. For
that reason we will also learn how to use the popular plotting package ggplot2.
But in this chapter we stick to base R, leaving ggplot for later chapters.

14.2 Example Setting: Penguins
To get started on some basic plotting techniques we will use the famous “Palmer
Penguins” dataset. This dataset contains several measurements of different
penguins collected by researchers on Antwerp Island in the Palmer Archipelago
of Antarctica. Interestingly, there is a smaller island next to this called Brabant
Island.

The dataset contains data from three species of penguins: the Adelie, Chinstrap
and Gentoo. A picture of each species is shown in the pictures below:

This dataset is convenient to use because we can load it into R straight from a
package. First install the package with the dataset with:

install.packages("palmerpenguins")

Then load it with:

library(palmerpenguins)
data(penguins)

79

80 CHAPTER 14. INTRODUCTION TO PLOTTING

Running the command data(penguins) loads up two datasets: penguins and
penguins_raw. We will ignore the penguins_raw dataset and only work with
the penguins one.

14.3 Data Inspection
Before getting started with plotting, it’s good to first get a basic understanding
of our data. Let’s get some summary statistics with summary() and find out
how many observations with have with nrow():

summary(penguins)

species island bill_length_mm bill_depth_mm
Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10
Chinstrap: 68 Dream :124 1st Qu.:39.23 1st Qu.:15.60
Gentoo :124 Torgersen: 52 Median :44.45 Median :17.30

Mean :43.92 Mean :17.15
3rd Qu.:48.50 3rd Qu.:18.70
Max. :59.60 Max. :21.50
NA's :2 NA's :2

flipper_length_mm body_mass_g sex year
Min. :172.0 Min. :2700 female:165 Min. :2007
1st Qu.:190.0 1st Qu.:3550 male :168 1st Qu.:2007
Median :197.0 Median :4050 NA's : 11 Median :2008
Mean :200.9 Mean :4202 Mean :2008
3rd Qu.:213.0 3rd Qu.:4750 3rd Qu.:2009
Max. :231.0 Max. :6300 Max. :2009
NA's :2 NA's :2

nrow(penguins)

[1] 344

We see that we have data on 344 penguins with the following variables:

• species: A factor variable indicating which of the 3 species the penguin
is.

• island: A factor variable indicating which island the penguin was on.
• bill_length_mm: A numerical variable indicating how long the penguin’s

bill (their beak) was (in mm).
• bill_depth_mm: A numerical variable indicating how deep the penguin’s

bill was (in mm). The depth is the distance between the top and bottom
of their beak.

• flipper_length_mm: A numerical variable indicating how long their flip-
per (wing) is (in mm).

• body_mass_g: A numerical variable indicating how heavy the penguin is
(in grams).

14.4. BASIC PLOTTING WITH BASE R 81

• sex: A factor variable indicating the gender of the penguins (male or
female).

• year: A numerical variable indicating what year the data point is from.

We also see that we have 2 missing values for 4 of the variables and 11 missing
values for sex. For our purposes here it is fine to just leave these missing values
in the dataset. We don’t need to delete those rows.

14.4 Basic Plotting with Base R
We will now learn how to do some very simple plots with base R: the histogram,
the bar plot and the scatter plot. The plots from base R are not very beautiful,
but the idea is to learn how to make “quick and dirty” plots for you to quickly
get a sense of your data, before making nicer customizable plots with ggplot.

14.4.1 Histograms
To describe the distribution of a single numeric variable, we can use a histogram.
A histogram splits the data into “bins” and shows the number of observations
in each bin. We can create a histogram by using the hist() function, putting
the variable we want to plot as the argument inside:

hist(penguins$body_mass_g)

Histogram of penguins$body_mass_g

penguins$body_mass_g

F
re

qu
en

cy

3000 4000 5000 6000

0
20

40
60

80

82 CHAPTER 14. INTRODUCTION TO PLOTTING

14.4.2 Bar Plot

For categorical variables, we can use a bar plot to visualize the relative frequen-
cies of different categories. We already saw the table() function which counts
the number of times each category appears:

table(penguins$species)

Adelie Chinstrap Gentoo
152 68 124

If we want to plot these values, we can put this entire expression into the
barplot() function:

barplot(table(penguins$species))

Adelie Chinstrap Gentoo

0
40

80
12

0

14.4.3 Scatter Plots

To quickly visualize the relationship between two variables we can make a scatter
plot. We can do this by listing the two variables we want to plot as arguments
in the plot() function:

plot(penguins$bill_length_mm, penguins$flipper_length_mm)

14.4. BASIC PLOTTING WITH BASE R 83

35 40 45 50 55 60

17
0

19
0

21
0

23
0

penguins$bill_length_mm

pe
ng

ui
ns

$f
lip

pe
r_

le
ng

th
_m

m

In each case, the base R commands to make plots are very short and easy to
use. Therefore I use them very frequently in the console to learn what a dataset
looks like. But because they do not look very nice I do not tend to use them
in research papers. I prefer to use the plots from ggplot, which we will learn
about next.

84 CHAPTER 14. INTRODUCTION TO PLOTTING

Chapter 15

Data Visualization with
ggplot

15.1 Introduction
ggplot is the main data visualization package in R. The gg in the name refers
to “Grammar of Graphics” which is a scheme of layering different parts of a
plot. As we will learn, ggplot() works by adding layers.

To get started, we first need to install and load the ggplot2 package. The name
of the package is ggplot2 (with a 2), but the function we use to make the plots
is just ggplot (without a 2).

install.packages("ggplot2")
library(ggplot2)

We also load the same penguins data that we saw in Chapter 14:

library(palmerpenguins)
data(penguins)

We will begin by recreating the plots we saw in Chapter 14 and customizing
them to our liking.

15.2 Histograms
15.2.1 Basic Histogram
Let’s first show how to make a basic histogram (without customization) and
then describe the different parts of the function:

85

86 CHAPTER 15. DATA VISUALIZATION WITH GGPLOT

ggplot(penguins, aes(body_mass_g)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_bin()`).

0

5

10

15

20

25

2500 3500 4500 5500 6500
body_mass_g

co
un

t

With ggplot(), the first argument you provide is the dataframe with the vari-
ables you want to plot. Here it’s the penguins dataframe. The second argument
is the “mapping” which we provide using the aes() (aesthetics) function. For a
histogram we only need to provide one variable. Because we already tell ggplot
the name of the dataframe, we only provide the variable name body_mass_g
here instead of typing penguins$body_mass_g.

The next thing we do is add layers. We do this using the sum operator, +. To
tell ggplot to add a histogram to the plot, we add geom_histogram(). It’s good
practice to put the layers on different lines to make them easier to read, as later
on we’ll see that ggplot commands can get very long as we add many many
layers.

We can see that ggplot gave 2 warnings when we did this command:

1. It tells us it is using 30 bins and tells us how we can change this.
2. Warning: Removed 2 rows containing non-finite values is telling

us that our data contain 2 NA values that weren’t included in the plot.
This is expected, because in Chapter 14 we saw that our dataset contains
some missing observations.

15.2. HISTOGRAMS 87

15.2.2 Customizing a Histogram
To customize the plot, we can use options in the functions, and add more layers
to the plot. There are many possibilities here. Let’s see some of these:

15.2.2.1 Changing the number of bins:

Just like the warning above told us, we can change the number of bins to a
different number using the bins option in geom_histogram(). Let’s change it
to use 15 bins instead:

ggplot(penguins, aes(body_mass_g)) +
geom_histogram(bins = 15)

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_bin()`).

0

10

20

30

40

50

3000 4000 5000 6000
body_mass_g

co
un

t

15.2.2.2 Changing the color of the bins:

We can change the color of the bins using the fill option in geom_histogram(),
and we can change the outline color of the bins using the color option. We add
this to the previous options:

ggplot(penguins, aes(body_mass_g)) +
geom_histogram(bins = 15, fill = "navy", color = "white")

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_bin()`).

88 CHAPTER 15. DATA VISUALIZATION WITH GGPLOT

0

10

20

30

40

50

3000 4000 5000 6000
body_mass_g

co
un

t

15.2.2.3 Changing the axis labels:

To change the names of the axis labels, we add additional layers. We can change
the horizontal axis label with the xlab() function, putting in quotes what we
want the new label to be. Similarly, we use the ylab() function for the vertical
axis label. Because these are additional layers, we add them to the plot using
the + operator:

ggplot(penguins, aes(body_mass_g)) +
geom_histogram(bins = 15, fill = "navy", color = "white") +
xlab("Penguin weight (grams)") +
ylab("Count")

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_bin()`).

15.2. HISTOGRAMS 89

0

10

20

30

40

50

3000 4000 5000 6000
Penguin weight (grams)

C
ou

nt

15.2.2.4 Changing the plot theme:

What if we want to get rid of the gray background? A white background is
better for plots that get printed on paper. The easiest way to do this is to
change the “theme” of the plot to a more minimalistic theme. We do this by
adding the theme_minimal() layer:

ggplot(penguins, aes(body_mass_g)) +
geom_histogram(bins = 15, fill = "navy", color = "white") +
xlab("Penguin weight (grams)") +
ylab("Count") +
theme_minimal()

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_bin()`).

90 CHAPTER 15. DATA VISUALIZATION WITH GGPLOT

0

10

20

30

40

50

3000 4000 5000 6000
Penguin weight (grams)

C
ou

nt

15.3 Bar Plots
We can create a bar plot in a very similar way. We just use the categorical
variable in place of the numeric one and use geom_bar() as the additional
layers instead:

ggplot(penguins, aes(species)) +
geom_bar()

0

50

100

150

Adelie Chinstrap Gentoo
species

co
un

t

We can also get a bar plot of the number of species on each island, which displays
even more information:

ggplot(penguins, aes(species, fill = island)) +

15.3. BAR PLOTS 91

geom_bar()

0

50

100

150

Adelie Chinstrap Gentoo
species

co
un

t

island

Biscoe

Dream

Torgersen

Here we can see that the Adelie is found on all 3 islands, but the Chinstrap is
only on “Dream” island and the Gentoo is only on “Torgersen” island.

We can add layers of customization to this in a similar way. This time we will
add all of the customization in one go. Here is one way to do it:

ggplot(penguins, aes(species, fill = island)) +
geom_bar(color = "black") +
xlab("Penguin species") +
ylab("Count") +
scale_fill_discrete(name = "Island",

type = c("#0B0405", "#357BA2", "#DEF5E5")) +
theme_minimal()

92 CHAPTER 15. DATA VISUALIZATION WITH GGPLOT

0

50

100

150

Adelie Chinstrap Gentoo
Penguin species

C
ou

nt
Island

Biscoe

Dream

Torgersen

The color option in geom_bar() is for the outline of the bars (fill is for the
fill color on the inside).

We can customize the colors and the legend name using the layer
scale_fill_discrete(). This is the name of the function because this
legend is for the “fill” variable, which is “discrete” because it’s a factor (as
opposed to a numerical variable which would be continuous). We provide the
legend name with the name option and we provide the colors using the type
option. Here I’ve provided the colors using the hexidecimal format as opposed
to their names like we did earlier with “navy”. This format allows you to choose
exactly what shade you like. You can find the hex code for any color with
many tools online. Google even has one built in if you search for “color picker”.
I have chosen these colors because the differences would still be clear even if
you printed out the plot in black and white.

15.4 Scatter Plots
For scatter plots we need to provide both the 𝑥 variable and the 𝑦 variable in
the aes() command. Let’s plot the bill length against the flipper length like we
did with base R:

ggplot(penguins, aes(bill_length_mm, flipper_length_mm)) +
geom_point()

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).

15.4. SCATTER PLOTS 93

170

180

190

200

210

220

230

40 50 60
bill_length_mm

fli
pp

er
_l

en
gt

h_
m

m

If we want to have the colors of the dots to change with the species, we can
specify that with color in aes() as well:

ggplot(penguins, aes(bill_length_mm, flipper_length_mm, color = species)) +
geom_point()

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).

170

180

190

200

210

220

230

40 50 60
bill_length_mm

fli
pp

er
_l

en
gt

h_
m

m

species

Adelie

Chinstrap

Gentoo

We can then add some more customization in the same way as before:

ggplot(penguins, aes(bill_length_mm, flipper_length_mm, color = species)) +
geom_point() +
scale_color_discrete(name = "Species") +

94 CHAPTER 15. DATA VISUALIZATION WITH GGPLOT

xlab("Bill length (in mm)") +
ylab("Flipper length (in mm)") +
theme_minimal()

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).

170

180

190

200

210

220

230

40 50 60
Bill length (in mm)

F
lip

pe
r

le
ng

th
 (

in
 m

m
)

Species

Adelie

Chinstrap

Gentoo

15.5 Saving Plots
There are many different ways to save plots created by R, but a simple way to
do so is to use the ggsave() function. If we want to save a plot as a PDF file
we simply use the command after our ggplot() call giving the name we want
to give to the plot with the appropriate file extension (such as .pdf or .png).
For example:

ggplot(penguins, aes(bill_length_mm, flipper_length_mm)) +
geom_point()

ggsave("my-plot.pdf")

The plot is saved in the current working directory - the folder given by the
getwd() command.

Chapter 16

Making Functions

16.1 Creating Simple Functions
It is very easy to make your own customized functions in R. Suppose, for exam-
ple, you want to make an R function to calculate the output of the quadratic
function:

𝑓(𝑥) = −8 − 2𝑥 + 𝑥2

If we want to call this function f(), we would define it as follows:

f <- function(x) {
y <- -8 - 2 * x + x^2
return(y)

}

The f is what we want to call the function. We assign to f using the assignment
operator, <-, the “function” with a single argument x using function(x). After
that we specify what the function is supposed to do:

• Calculate y <- -8 - 2 * x + x^2
• Return y as the output. We use the return() function to specify what

the output of the function is.

We need to wrap what the function does in curly brackets ({ }) because what
the function does can span several lines. Using the curly brackets tells R that
these commands belong together in the function.

Let’s try out the function:

f(2)

[1] -8

95

96 CHAPTER 16. MAKING FUNCTIONS

f(3)

[1] -5

We can also pass a vector into the function to see the output for several values
at once:

f(c(2, 3, 4))

[1] -8 -5 0

16.2 Plotting Functions
We can also use ggplot() to plot the function. To do this we first create a
sequence of values of x over the range that we want to see the function plotted.
We then evaluate the function for each of these values of x and save it as y. We
then combine x and y into a data.frame and plot it like we learned in Chapter 14.

Let’s give it a try:

library(ggplot2)
x <- seq(from = -4, to = 6, length.out = 200)
y <- f(x)
df <- data.frame(x, y)
ggplot(df, aes(x, y)) + geom_line()

−10

0

10

−4 −2 0 2 4 6
x

y

In this example, the sequence runs from −4 to +6. The length.out option
specifies how many numbers in total there should be in the sequence between
−4 and +6. 200 numbers is plenty to get a curve that looks smooth. Why did

16.2. PLOTTING FUNCTIONS 97

we use −4 and +6 here? This range includes minimum and gives a good idea
of its shape. You can try out different ranges instead (using numbers different
from −4 and +6). When making these plots the easiest thing to do is try out
different numbers until the plot looks good.

98 CHAPTER 16. MAKING FUNCTIONS

Chapter 17

Univariate Unconstrained
Optimization

In Chapter 16 we learned how to make our own functions. We learned how to
write a function to calculate:

𝑓(𝑥) = −8 − 2𝑥 + 𝑥2

The function was:

f <- function(x) {
y <- -8 - 2 * x + x^2
return(y)

}

In this chapter we will learn how to find the extreme point (maximum/minimum)
of this univariate function (function with only one variable).

17.1 Plotting Approach
In Chapter 16, we also learned how to plot the function with ggplot(). We can
get a visual view of the extreme point:

library(ggplot2)
x <- seq(from = -4, to = 6, length.out = 200)
df <- data.frame(x, y = f(x))
ggplot(df, aes(x, y)) +
geom_line()

99

100 CHAPTER 17. UNIVARIATE UNCONSTRAINED OPTIMIZATION

−10

0

10

−4 −2 0 2 4 6
x

y

From the plot we can see the following that the function achieves a minimum
at 𝑥 = 1.

17.2 Analytic Solution
We could have found this number analytically using calculus. Let’s do that
before doing it in R. The first derivative of the function is:

𝑓 ′(𝑥) = −2 + 2𝑥
To find the extreme point of the function we find the value of 𝑥 where 𝑓 ′(𝑥) = 0.
This happens when:

−2 + 2𝑥 = 0
Solving for 𝑥 yields 𝑥 = 1. To see if this is a maximum or a minimum we check
the second derivative:

𝑓 ′′(𝑥) = +2
This is positive, so we know it is a minimum. A minimum at 𝑥 = 1 is exactly
what we see in the plot.

17.3 Using Optimization
We will now use R to find the extreme point using optimization. We can use the
optimize() function to find the minimum of a univariate function in R. To do
that we need to first specify the function we want to minimize and an interval
to search over. We specify the interval as a vector with two elements, the lower

17.3. USING OPTIMIZATION 101

bound and the upper bound. We will use a wide interval of [−100, +100]. We
also need to specify if we are looking for a maximum or a minimum. We do that
with the maximum option and set it to FALSE when looking for a minimum:

optimize(f, interval = c(-100, 100), maximum = FALSE)

$minimum
[1] 1

$objective
[1] -9

We can see that we get the same result as the plot and the analytic solution.
The minimum value occurs at 𝑥 = 1 and the value of the function is −9 at that
point.

If you want to maximize a function instead, we need to set maximum = TRUE.

The optimize() function returns a named list. Suppose we assign the output
of the optimize() function to f_min:

f_min <- optimize(f, interval = c(-100, 100), maximum = FALSE)
class(f_min)

[1] "list"

To extract the minimum from this list we can use f_min$minimum. The $ works
for extraction with named lists the same way as with dataframes. To extract
the value of the function at the minimum, we can use f_min$objective:

f_min$minimum

[1] 1

f_min$objective

[1] -9

102 CHAPTER 17. UNIVARIATE UNCONSTRAINED OPTIMIZATION

Chapter 18

Conditional Statements

18.1 If-else statements
Conditional statements, or “If-else statements” are very useful and extremely
common in programming. In an if-else statement, the code first checks a partic-
ular true/false condition. If the condition is true, it performs one action, and if
the condition is false, it performs another action.

A simple example of this is the absolute value function we saw in Chapter 3.
Let’s define precisely what that function does:

|𝑥| = {−𝑥 if 𝑥 < 0
𝑥 otherwise

If 𝑥 < 0, it returns −𝑥 (so that the number becomes positive). Otherwise, it
returns just 𝑥: if 𝑥 was positive it stays positive, and if 𝑥 is zero it stays zero.

Although there already is an absolute value function in R that we saw in Chap-
ter 3 (the abs() function), we can easily create our own function to do the same
thing.

Let’s call this function my_abs() (my absolute value function):

my_abs <- function(x) {
if (x < 0) {
return(-x)

} else {
return(x)

}
}

103

104 CHAPTER 18. CONDITIONAL STATEMENTS

After if, we need to write the condition to check in parentheses (here x < 0).
Then we write between the curly brackets ({ and }) what we want R to do if
the condition is TRUE (here return -x). Then we write else and write between
the curly brackets what we want R to do if the condition is FALSE (here return
x).

Let’s go through what R does here given an input x. First R checks the condition
x < 0. If it is TRUE it returns −𝑥 and it’s done. If it is FALSE it goes to the
else and returns 𝑥.

Let’s test it out:

my_abs(-2)

[1] 2

my_abs(3)

[1] 3

my_abs(0)

[1] 0

18.2 The ifelse() function
The my_abs() function we wrote above only works with scalar inputs (vectors
of length one). If we try use it with a vector it will return an error. A useful
function in R is the ifelse() function, which can do if-else statements on
vectors. The function takes 3 arguments:

1. A logical vector (such as a condition to check).
2. What to do when TRUE.
3. What to do when FALSE.

Let’s use the ifelse() function to get the absolute value of the sequence
(−3, −2, −1, 0, 1, 2, 3):
x <- -3:3
ifelse(x < 0, -x, x)

[1] 3 2 1 0 1 2 3

The first argument checks the condition 𝑥 < 0. This will be TRUE for the first 3
elements, and FALSE everywhere else. Let’s see this:

x < 0

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE

The second argument is what to do when the condition is TRUE. This is to turn
the 𝑥 to −𝑥, which makes the negative values positive. We can see that it did
precisely this for the first 3 elements.

18.3. “IF ELSE-IF ELSE” STATEMENTS 105

The third argument is what to do when the condition is FALSE. By writing just
x, we are telling R to leave those elements unchanged.

We can also use the ifelse() statement to create other types of variables. For
example, we can use it to make character variables:

x <- -3:3
ifelse(x < 0, "Negative", "Non-negative")

[1] "Negative" "Negative" "Negative" "Non-negative" "Non-negative"
[6] "Non-negative" "Non-negative"

When 𝑥 < 0, the output element is "Negative" and when 𝑥 ≥ 0, the output
element is "Non-negative".

18.3 “If else-if else” statements
Sometimes we want to do one thing if a certain condition holds, another thing
if a different condition holds, and something else in the remaining cases. An
example of this is the “sign” function, which tells you the sign in front of a
value:

𝑠𝑔𝑛(𝑥) =
⎧{
⎨{⎩

−1 if 𝑥 < 0
0 if 𝑥 = 0
+1 otherwise

If the value is negative, we get −1. If it’s zero we get 0. If it’s positive (the
remaining case), we get +1.

To do this in R, we can nest several if-else statements. We simply write else
if for the intermediate case:

sgn <- function(x) {
if (x < 0) {
return(-1)

} else if (x == 0) {
return(0)

} else {
return(+1)

}
}

Like above, after if we write the condition to check in parentheses and in curly
brackets what to do if the condition is TRUE. We then write else if and write
another condition to check, as well as what to do when that condition is TRUE
in curly brackets. We then write after else what to do if neither of the above
conditions are TRUE.

Let’s go through what R does here. Given an input x:

106 CHAPTER 18. CONDITIONAL STATEMENTS

1. R checks the condition x < 0. If it is TRUE it returns −1. If it is FALSE it
goes to the next step.

2. R checks the condition x == 0. If it is TRUE it returns 0. If it is FALSE it
goes to the next step.

3. R returns +1 (happens if neither of the above conditions are TRUE).

Let’s try it out:

sgn(-2)

[1] -1

sgn(3)

[1] 1

sgn(0)

[1] 0

“If else-if else” statements with vectors
The above approach only works for scalars. If we want to do this with vectors,
we can nest the ifelse() function inside itself like this:

x <- -3:3
x

[1] -3 -2 -1 0 1 2 3

ifelse(x < 0, -1, ifelse(x == 0, 0, 1))

[1] -1 -1 -1 0 1 1 1

Let’s take apart what’s happening in ifelse(x < 0, -1, ifelse(x == 0, 0,
1)) for an element in x:

• R first checks for each element in 𝑥 if 𝑥 < 0. If it is TRUE, it returns −1;
if it is FALSE, it goes to the next ifelse().

• If we go to the next ifelse(), it checks if the element satisfies 𝑥 = 0. If
this is TRUE it returns 0; if it is FALSE, it returns +1.

Chapter 19

Merging

Often we want to be able to join datasets together to analyze the relationship
between variables. For example, suppose we are interested in the relationship
between the price of crude oil on commodities markets and the average price of
petrol at the pumps over time. We download data on daily petrol prices and
daily data on crude oil prices. But if one dataset has more observations (spans
a longer time period) than the other, or one has missing observations (such as
weekend and holiday values missing), it’s not so straightforward to match them
up together.

Fortunately, the merge() function solves these problems. We will learn how to
use that function here.

19.1 Data Cleaning
First we read in and clean the petrol price data. You can download the dataset
here.

df1 <- read.csv("avg_daily_petrol_prices.csv")
Format dates:
df1$date <- as.Date(df1$date, format = "%Y-%m-%d")
summary(df1)

date e5 e10 diesel
Min. :2014-06-08 Min. :1.159 Min. :1.130 Min. :0.9558
1st Qu.:2016-07-03 1st Qu.:1.340 1st Qu.:1.318 1st Qu.:1.1322
Median :2018-07-29 Median :1.402 Median :1.379 Median :1.2353
Mean :2018-07-29 Mean :1.456 Mean :1.423 Mean :1.2811
3rd Qu.:2020-08-23 3rd Qu.:1.522 3rd Qu.:1.479 3rd Qu.:1.3217
Max. :2022-09-18 Max. :2.261 Max. :2.203 Max. :2.3343

nrow(df1)

107

https://walshc.github.io/pqs/avg_daily_petrol_prices.csv

108 CHAPTER 19. MERGING

[1] 3025

We now do the same with the Brent crude oil prices. You can download the
dataset here.

df2 <- read.csv("Europe_Brent_Spot_Price_FOB.csv", skip = 4)
Format dates:
df2$Day <- as.Date(df2$Day, format = "%m/%d/%Y")
Rename variables:
names(df2) <- c("date", "crude_oil")
Sort ascending:
df2 <- df2[order(df2$date),]
summary(df2)

date crude_oil
Min. :1987-05-20 Min. : 9.10
1st Qu.:1996-03-06 1st Qu.: 19.03
Median :2005-01-04 Median : 38.08
Mean :2005-01-12 Mean : 48.22
3rd Qu.:2013-11-24 3rd Qu.: 69.67
Max. :2022-09-19 Max. :143.95

nrow(df2)

[1] 8970

We see that the petrol price data covers 2014-2022, and the crude oil price data
covers 1987-2022. If we look closer at the dates, we notice that the crude oil
price data doesn’t include the weekends, whereas the petrol price data does:

head(df1$date, n = 10)

[1] "2014-06-08" "2014-06-09" "2014-06-10" "2014-06-11" "2014-06-12"
[6] "2014-06-13" "2014-06-14" "2014-06-15" "2014-06-16" "2014-06-17"

head(df2$date, n = 10)

[1] "1987-05-20" "1987-05-21" "1987-05-22" "1987-05-25" "1987-05-26"
[6] "1987-05-27" "1987-05-28" "1987-05-29" "1987-06-01" "1987-06-02"

19.2 Merging
19.2.1 The merge() Command
Now that the two datasets are clean, we merge the two using the merge()
function. The first two arguments of the merge() function are the two datasets
we want to merge. The third argument, by, specifies the variable name (in
quotations) that links the two datasets. In our case, the variable linking the
two is the date variable.

https://walshc.github.io/pqs/Europe_Brent_Spot_Price_FOB.csv

19.2. MERGING 109

df <- merge(df1, df2, by = "date")
summary(df)

date e5 e10 diesel
Min. :2014-06-09 Min. :1.159 Min. :1.130 Min. :0.9558
1st Qu.:2016-07-04 1st Qu.:1.339 1st Qu.:1.318 1st Qu.:1.1302
Median :2018-07-26 Median :1.402 Median :1.379 Median :1.2345
Mean :2018-07-27 Mean :1.455 Mean :1.422 Mean :1.2797
3rd Qu.:2020-08-19 3rd Qu.:1.521 3rd Qu.:1.478 3rd Qu.:1.3216
Max. :2022-09-16 Max. :2.261 Max. :2.203 Max. :2.3343
crude_oil

Min. : 9.12
1st Qu.: 48.54
Median : 61.18
Mean : 63.47
3rd Qu.: 72.97
Max. :133.18

nrow(df)

[1] 2107

We notice that the dataset becomes much smaller: only 2,107 observations
instead of 3,025 in df1 and 8,970 in df2. This is because df1 only contained
dates from 2014 onwards, and df2 only contains data on weekdays. The merged
datasets only includes weekdays between 2014-2022, and is thus much smaller.

19.2.2 Keeping Unmatched Observations
If we want to avoid dropping the observations where there is no match, we can
use one of the following options:

• all.x = TRUE : Keeps all observations in the 1st dataset, but only merges
data from the 2nd dataset when there is a match. When there is no match,
variables in the 2nd dataset get assigned NA values.

• all.y = TRUE : Keeps all observations in the 2nd dataset, but only merges
data from the 1st dataset when there is a match. When there is no match,
variables in the 1st dataset get assigned NA values.

• all = TRUE : This keeps all observations from both datasets, and variables
get assigned NA values when there is no match. This is equivalent to setting
both all.x = TRUE and all.y = TRUE.

For example, suppose we use the all.x = TRUE option:

df <- merge(df1, df2, by = "date", all.x = TRUE)
summary(df)

date e5 e10 diesel
Min. :2014-06-08 Min. :1.159 Min. :1.130 Min. :0.9558
1st Qu.:2016-07-03 1st Qu.:1.340 1st Qu.:1.318 1st Qu.:1.1322

110 CHAPTER 19. MERGING

Median :2018-07-29 Median :1.402 Median :1.379 Median :1.2353
Mean :2018-07-29 Mean :1.456 Mean :1.423 Mean :1.2811
3rd Qu.:2020-08-23 3rd Qu.:1.522 3rd Qu.:1.479 3rd Qu.:1.3217
Max. :2022-09-18 Max. :2.261 Max. :2.203 Max. :2.3343

crude_oil
Min. : 9.12
1st Qu.: 48.54
Median : 61.18
Mean : 63.47
3rd Qu.: 72.97
Max. :133.18
NA's :918

nrow(df)

[1] 3025

We see that we have 3,025 rows, the same as the original df1. However, the
variable crude_oil, which was merged from df2 now has 918 missing values.
Any time df2$crude_oil didn’t have a value for a date in df1, we replace it
with an NA. When we didn’t specify all.x = TRUE, we ended up with 2,107
observations. This is because it dropped all the rows where there was no match.
The 2,107 comes from the 3,025 original rows in df1, minus the 918 rows where
there was no corresponding match in df2 (3,025-918=2,107).

19.2.3 Other Merging Options
Finally, we end with some further remarks on the merge() function. First, if you
are merging on multiple variables, you can include a vector of variable names
in the by argument. For example, suppose you are merging the two datasets:

• df1: contains the revenue in each market area (variable market_area)
and date (variable date).

• df2: contains the advertising expenditure in each market area (variable
market_area) and date (variable date).

Let’s create two example datasets for illustration purposes here:

df1 <- data.frame(expand.grid(
market_area = c("Market A", "Market B"),
date = seq(as.Date("2022-01-01"), as.Date("2022-03-01"), by = "month")

))
df1$revenue <- runif(n = nrow(df1), min = 0, max = 1000)

df2 <- data.frame(expand.grid(
market_area = c("Market A", "Market B"),
date = seq(as.Date("2022-01-01"), as.Date("2022-03-01"), by = "month")

))

19.2. MERGING 111

df2$advertising_exp <- runif(n = nrow(df1), min = 0, max = 500)

df1

market_area date revenue
1 Market A 2022-01-01 485.76845
2 Market B 2022-01-01 940.01892
3 Market A 2022-02-01 74.59912
4 Market B 2022-02-01 785.79297
5 Market A 2022-03-01 109.54504
6 Market B 2022-03-01 961.13105

df2

market_area date advertising_exp
1 Market A 2022-01-01 480.6382
2 Market B 2022-01-01 426.6870
3 Market A 2022-02-01 236.2161
4 Market B 2022-02-01 302.1044
5 Market A 2022-03-01 415.5219
6 Market B 2022-03-01 212.2895

Some notes on the functions used here:

• The expand.grid() function here creates every combination of each mar-
ket area and date (you won’t be asked to use this function in the exam).

• The seq() function can also be used to create sequences of dates. We can
specify the step length to be "day" "month", "quarter" or "year".

• The runif() function creates n random numbers between min and max
(you won’t be asked to use this function in the exam).

We can merge these two datasets by simply including a vector of the variable
names in the by argument:

df <- merge(df1, df2, by = c("market_area", "date"))
df

market_area date revenue advertising_exp
1 Market A 2022-01-01 485.76845 480.6382
2 Market A 2022-02-01 74.59912 236.2161
3 Market A 2022-03-01 109.54504 415.5219
4 Market B 2022-01-01 940.01892 426.6870
5 Market B 2022-02-01 785.79297 302.1044
6 Market B 2022-03-01 961.13105 212.2895

If the variable names are different in the two datasets, we could change the names
of the variables to make them match before merging. But what we could do
instead is use the by.x and by.y options in the merge() function. For instance,
suppose in the previous example the market area variable was called "market"

112 CHAPTER 19. MERGING

in df2 instead of "market_area". Let’s change the name of the variable in df2
to that:

names(df2)[names(df2) == "market_area"] <- "market"

If I want to merge the two datasets in this case I can do:

df <- merge(df1, df2, by.x = c("market_area", "date"),
by.y = c("market", "date"))

df

market_area date revenue advertising_exp
1 Market A 2022-01-01 485.76845 480.6382
2 Market A 2022-02-01 74.59912 236.2161
3 Market A 2022-03-01 109.54504 415.5219
4 Market B 2022-01-01 940.01892 426.6870
5 Market B 2022-02-01 785.79297 302.1044
6 Market B 2022-03-01 961.13105 212.2895

Finally, by default, merge() will sort the data by the merging variable(s). To
avoid this behaviour you can use the sort = FALSE option.

Chapter 20

Reshaping

20.1 From Long to Wide
Suppose we have the following dataset:

long <- data.frame(
id = rep(1:3, each = 2),
variable = rep(c("x", "y"), times = 3),
value = c(3, 5, 4, 8, 3, 1)

)
long

id variable value
1 1 x 3
2 1 y 5
3 2 x 4
4 2 y 8
5 3 x 3
6 3 y 1

This dataset is in what is called “long” format. We have 3 individuals, with IDs
1, 2, 3. For each individual we have 2 variables, x and y, and for each individual
and variable we observe the value in the value column.

If we want to reshape this dataset so that it has only 1 row per individ-
ual (3 rows in total), with the variables x and y as separate variables, we
can use functions from the reshape2 package. Install the package with
install.packages("reshape2"). You can use the dcast() function from this
package to reshape the data as follows:

library(reshape2)
wide <- dcast(long, id ~ variable)

113

114 CHAPTER 20. RESHAPING

wide

id x y
1 1 3 5
2 2 4 8
3 3 3 1

The first argument is the name of the dataset. The second argument is the
formula for how to reshape. We put the ID variable that we want to represent
the rows first, then we use the ~ symbol, and then we put the variable with the
different variable names.

20.2 From Wide to Long
We can also go the other direction. Let’s get back to our original data by
reshaping the new wide dataset back to long. Let’s call the output long2. We
can do that with the melt() function:

long2 <- melt(wide, id.vars = "id")
long2

id variable value
1 1 x 3
2 2 x 4
3 3 x 3
4 1 y 5
5 2 y 8
6 3 y 1

Again, the first argument is the name of the dataset. The second is the variable
is the varying representing the observation IDs.

20.3 Example Usage Case
Sometimes with ggplot, we need to have the data in long format. This happens
when we want to plot multiple variables on the same plot with different colors.
Let’s use the petrol price dataset from Chapter 19 to demonstrate this:

Read in and clean petrol price data:
df <- read.csv("avg_daily_petrol_prices.csv")
df$date <- as.Date(df$date) # format dates
head(df)

date e5 e10 diesel
1 2014-06-08 1.551987 1.477774 1.353583
2 2014-06-09 1.576623 1.483362 1.385182
3 2014-06-10 1.569619 1.478455 1.374060
4 2014-06-11 1.572578 1.481119 1.377091

20.3. EXAMPLE USAGE CASE 115

5 2014-06-12 1.574652 1.480383 1.378247
6 2014-06-13 1.584659 1.492049 1.387577

The dataset is currently in “wide” format. The date runs down the dataset
and the variables (petrol prices) at each date are stored horizontally from this.
Let’s go to “long” format with the melt() function, where "date" represents
the observation IDs.

df2 <- melt(df, "date")
head(df2)

date variable value
1 2014-06-08 e5 1.551987
2 2014-06-09 e5 1.576623
3 2014-06-10 e5 1.569619
4 2014-06-11 e5 1.572578
5 2014-06-12 e5 1.574652
6 2014-06-13 e5 1.584659

Now the dataset is in long format: we have the date, a variable representing the
variable names (variable), and the values of each variable (value).

Let’s use this long-format data to plot the petrol prices over time for each type
of petrol:

library(ggplot2)
ggplot(df2, aes(date, value, color = variable)) +
geom_line()

1.2

1.6

2.0

2.4

2016 2018 2020 2022
date

va
lu

e

variable

e5

e10

diesel

We can customize this plot a bit with:

116 CHAPTER 20. RESHAPING

levels(df2$variable) <- c("E5", "E10", "Diesel")
ggplot(df2, aes(date, value, color = variable)) +
geom_line() +
xlab("") +
ylab("Average Daily Petrol Price (in Euro)") +
scale_color_discrete(name = "Petrol Type:") +
theme_minimal() +
theme(legend.direction = "horizontal",

legend.position = "bottom")

1.2

1.6

2.0

2.4

2016 2018 2020 2022

A
ve

ra
ge

 D
ai

ly
 P

et
ro

l P
ric

e
(in

 E
ur

o)

Petrol Type: E5 E10 Diesel

Chapter 21

Aggregating by Group

Sometimes we want to get the average or sum of a variable by group. We can do
this in R using the aggregate() function. Let’s learn how to use this function
using an example. We will use the daily average petrol price data from before.
Suppose we wanted to get the average petrol price by year from this. Let’s load
up the data again:

df <- read.csv("avg_daily_petrol_prices.csv")
df$date <- as.Date(df$date) # format dates

To aggregate by year, we first need to create a variable which gives the year
corresponding to the date. There are several ways to do this.

One way to get the year is to re-format the date so that it only shows the year.
Recall from Chapter 13, that %Y represents the year in R:

df$year <- format(df$date, format = "%Y")

But an easier way is to use the year() function from the lubridate package.
You can install it with install.packages("lubridate"). With this package
loaded, we can use the function with:

library(lubridate)
df$year <- year(df$date)

The next step is to use the aggregate() function. If I want the average price
of E10 petrol by year, I can do the following:

aggregate(e10 ~ year, FUN = mean, data = df)

year e10
1 2014 1.461632
2 2015 1.373425
3 2016 1.282375
4 2017 1.345430

117

118 CHAPTER 21. AGGREGATING BY GROUP

5 2018 1.430955
6 2019 1.408177
7 2020 1.253603
8 2021 1.522833
9 2022 1.875897

Here we first provide the formula: We want the average of e10 by year so we
write e10 ~ year. The function we want to use is the mean (to get the average).
Finally, we provide the name of the dataset, df.

We can calculate the average of all petrol prices by year by adding all the
variables with cbind():

aggregate(cbind(e5, e10, diesel) ~ year, FUN = mean, data = df)

year e5 e10 diesel
1 2014 1.519195 1.461632 1.334612
2 2015 1.393170 1.373425 1.173013
3 2016 1.302767 1.282375 1.081282
4 2017 1.368414 1.345430 1.161306
5 2018 1.454098 1.430955 1.287264
6 2019 1.430592 1.408177 1.265341
7 2020 1.288080 1.253603 1.111068
8 2021 1.579992 1.522833 1.387114
9 2022 1.933512 1.875897 1.941386

If you have a lot of variables, you can get the average of all of them by year by
replacing the part before the ~ with a dot:

aggregate(. ~ year, FUN = mean, data = df)

year date e5 e10 diesel
1 2014 16332.0 1.519195 1.461632 1.334612
2 2015 16618.0 1.393170 1.373425 1.173013
3 2016 16983.5 1.302767 1.282375 1.081282
4 2017 17349.0 1.368414 1.345430 1.161306
5 2018 17714.0 1.454098 1.430955 1.287264
6 2019 18079.0 1.430592 1.408177 1.265341
7 2020 18444.5 1.288080 1.253603 1.111068
8 2021 18810.0 1.579992 1.522833 1.387114
9 2022 19123.0 1.933512 1.875897 1.941386

You may notice that this also gives us the average of the date variable in the
year as numbers that don’t look like dates. Similar to Excel, underlying each
date in R is a number which is the number of days since the 1/1/1970 (in Excel
it’s days since 1/1/1900). 1/1/2014 is 16,071 days since 1/1/1970, so that is
why we see numbers this size there.

We can also replace mean with any function we like. For example, to get the
maximum average daily price in a year:

119

aggregate(e10 ~ year, FUN = max, data = df)

year e10
1 2014 1.542430
2 2015 1.499718
3 2016 1.375595
4 2017 1.393057
5 2018 1.552005
6 2019 1.533291
7 2020 1.438141
8 2021 1.703694
9 2022 2.203362

To get the number of observations per year:

aggregate(e10 ~ year, FUN = length, data = df)

year e10
1 2014 207
2 2015 365
3 2016 366
4 2017 365
5 2018 365
6 2019 365
7 2020 366
8 2021 365
9 2022 261

120 CHAPTER 21. AGGREGATING BY GROUP

Tutorial Exercises

Below are links to the exercises and solutions for each of the tutorial exercises.

Week 2: Chapters 2-8

• Exercises
• Solutions

Week 3: Chapters 9-12

• Exercises
• Solutions

Week 4: Chapter 13

• Exercises
• Solutions

Week 5: Chapters 14-15

• Exercises
• Solutions

Week 6: Chapters 16-18

• Exercises
• Solutions

Week 7: Chapters 19-21

• Exercises
• Solutions

Sample Exam

• Exercises
• Solutions

121

https://walshc.github.io/pqs-tutorials/tutorial2-questions.html
https://walshc.github.io/pqs-tutorials/tutorial2.html
https://walshc.github.io/pqs-tutorials/tutorial3-questions.html
https://walshc.github.io/pqs-tutorials/tutorial3.html
https://walshc.github.io/pqs-tutorials/tutorial4-questions.html
https://walshc.github.io/pqs-tutorials/tutorial4.html
https://walshc.github.io/pqs-tutorials/tutorial5-questions.html
https://walshc.github.io/pqs-tutorials/tutorial5.html
https://walshc.github.io/pqs-tutorials/tutorial6-questions.html
https://walshc.github.io/pqs-tutorials/tutorial6.html
https://walshc.github.io/pqs-tutorials/tutorial7-questions.html
https://walshc.github.io/pqs-tutorials/tutorial7.html
https://walshc.github.io/pqs-exams/sample-exam.html
https://walshc.github.io/pqs-exams/sample-exam-solutions.html

122 Tutorial Exercises

Extra Practice Questions

• Exercises
• Solutions

https://walshc.github.io/pqs-exams/extra-practice-questions.html
https://walshc.github.io/pqs-exams/extra-practice-questions-with-solutions.html

	About
	Getting Started
	What is R and what is RStudio?
	What is a programming language?
	Why learn R?

	Installing R and RStudio
	Installation on Windows
	Installation on MacOS
	Installation on Ubuntu/Debian

	Opening RStudio

	R as a Calculator
	The R Console
	Addition, Subtraction, Multiplication and Division
	Troubleshooting: ``Escaping'' in R
	Exponentiation (Taking Powers of Numbers)
	Absolute value
	Square and Cubed Roots
	Exponentials
	Logarithms

	Objects and Object Types
	The Assignment Operator
	Assigning Objects
	The Environment Tab in RStudio
	Troubleshooting with the Assignment Operator

	Common Object Types
	Numeric Vectors
	Logical Vectors
	Character Vectors
	Factors (Categorical Variables)
	Data Frame
	Lists

	Operations on Vectors
	Indexing
	Sequences
	Repeating Numbers
	Summary Statistics for Vectors

	Comparing Vectors
	Comparing Numerical Vectors
	Comparing Logical Vectors

	R Scripts
	Creating a New R Script
	Running the Commands in an R Script
	Selecting Lines and Running
	Sourcing

	Commenting in R
	Commenting as Annotation
	Commenting to Not Run Certain Commands

	Loading a CSV Dataset
	Structure of a CSV file
	Commas as Part of Character Variables
	Decimal Commas in CSV Files

	Reading in a CSV file
	Absolute Paths
	Relative Paths
	RStudio Projects

	R Packages
	Example Setting: Reading Excel Files
	Installing packages
	From the command line
	From RStudio

	Loading packages
	Data Formats from other Software (Optional)

	Dataframes: Indexing
	Running Example: The Eredivisie Results from 2022/23
	Indexing with Dataframes

	Dataframes: Creating Variables
	Goal Difference
	Total Points
	Team Ranking
	Relegation Status

	Dataframes: Summary Statistics
	summary() for Dataframes
	head() and tail()
	nrow() and ncol()
	names()

	Data Cleaning
	Skipping Rows
	Formatting Dates
	Converting Dates in the ASML Example
	Converting Dates from Other Formats
	Converting Dates with Month Names (Optional)

	Converting Characters to Numbers
	Deleting columns
	Dropping rows with missing data
	Renaming Variables

	Introduction to Plotting
	Introduction
	Example Setting: Penguins
	Data Inspection
	Basic Plotting with Base R
	Histograms
	Bar Plot
	Scatter Plots

	Data Visualization with ggplot
	Introduction
	Histograms
	Basic Histogram
	Customizing a Histogram

	Bar Plots
	Scatter Plots
	Saving Plots

	Making Functions
	Creating Simple Functions
	Plotting Functions

	Univariate Unconstrained Optimization
	Plotting Approach
	Analytic Solution
	Using Optimization

	Conditional Statements
	If-else statements
	The ifelse() function
	``If else-if else'' statements
	``If else-if else'' statements with vectors

	Merging
	Data Cleaning
	Merging
	The merge() Command
	Keeping Unmatched Observations
	Other Merging Options

	Reshaping
	From Long to Wide
	From Wide to Long
	Example Usage Case

	Aggregating by Group
	Tutorial Exercises

