Censored and Truncated Outcome Panel Data Models

230347 Advanced Microeconometrics
Tilburg University

Christoph Walsh

Censored Data

- $y_{i t}$ is censored when it is partly continuous but has positive probability mass at one or more points.
- For example, $y_{i t}$ is continuous when $y_{i t}>0$ but has a large mass at $y_{i t}=0$.
- We can sometimes think of the underlying model as:

$$
y_{i t}^{\star}=\alpha_{i}+\boldsymbol{x}_{i t}^{\prime} \boldsymbol{\beta}+\varepsilon_{i t}
$$

but we observe:

$$
y_{i t}=\left\{\begin{array}{ll}
y_{i t}^{\star} & \text { if } y_{i t}^{\star}>\underline{y} \\
\underline{y} & \text { if } y_{i t}^{\star} \leq \underline{y}
\end{array} \quad \text { or } \quad y_{i t}= \begin{cases}\bar{y} & \text { if } y_{i t}^{\star} \geq \bar{y} \\
y_{i t}^{\star} & \text { if } y_{i t}^{\star}<\bar{y}\end{cases}\right.
$$

- For example, top-coded income.
- Other times we can think of \bar{y} or \underline{y} as a corner solution of an optimization problem.
- For example, hours worked, firm expenditure on R\&D.

Histogram of censored $y_{i t}$ left of zero

Truncated Data

- Our sample may be truncated, where our sample only has observations where $y_{i t}>\underline{y}$ or $y_{i t}<\bar{y}$
- For example, we may only observe people who work.

Histogram of truncated $y_{i t}$

Models in this Topic

- Static Censored Random Effects
- Static Truncated Fixed Effects
- It is possible to estimate Static \& Dynamic Censored Fixed Effects models, but we won't cover them here.

Censored Data: Panel Random Effects Tobit Model

- We consider the left-censored data case where $\underline{y}=0$.
- We observe:

$$
y_{i t}= \begin{cases}y_{i t}^{\star} & \text { if } y_{i t}^{\star}>0 \\ 0 & \text { if } y_{i t}^{\star} \leq 0\end{cases}
$$

- Let $d_{i t}=\mathbb{1}\left\{y_{i t}>0\right\}$.
- If $\varepsilon_{i t} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)$, then using $\varepsilon_{i t}=y_{i t}^{\star}-\alpha_{i}-\boldsymbol{x}_{i t}^{\prime} \boldsymbol{\beta}$, the joint conditional density of $\boldsymbol{y}_{i}=\left(y_{i 1}, \ldots, y_{i T}\right)$ is

$$
f\left(\boldsymbol{y}_{i} \mid \boldsymbol{X}_{i}, \alpha_{i}, \boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\right)=\prod_{t=1}^{T}\left[\frac{1}{\sigma_{\varepsilon}} \phi\left(\frac{y_{i t}-\alpha_{i}-\boldsymbol{x}_{i t}^{\prime} \boldsymbol{\beta}}{\sigma_{\varepsilon}}\right)\right]^{d_{i t}}\left[1-\Phi\left(\frac{\alpha_{i}+\boldsymbol{x}_{i t}^{\prime} \boldsymbol{\beta}}{\sigma_{\varepsilon}}\right)\right]^{1-d_{i t}}
$$

where $\boldsymbol{X}_{i}=\left(\boldsymbol{x}_{i 1}, \ldots, \boldsymbol{x}_{i T}\right)$ and ϕ and Φ are the pdf and cdf of the standard normal distribution respectively.

Censored Data: Panel Random Effects Tobit Model

- If we model $\alpha_{i} \sim \mathcal{N}\left(0, \sigma_{\alpha}^{2}\right)$, then we can integrate out the α_{i} :

$$
f\left(\boldsymbol{y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{\beta}, \sigma_{\varepsilon}^{2}, \sigma_{\alpha}^{2}\right)=\int_{-\infty}^{\infty} f\left(\boldsymbol{y}_{i} \mid \boldsymbol{X}_{i}, \alpha_{i}, \boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\right) \frac{1}{\sqrt{2 \pi \sigma_{\alpha}^{2}}} \exp \left(\frac{-\alpha_{i}^{2}}{2 \sigma_{\alpha}^{2}}\right) d \alpha_{i}
$$

- There is no closed-form solution for the likelihood and therefore needs to be computed using simulation methods.
- We can perform the same change of variables as with the probit random effects and approximate the integral with Gauss-Hermite quadrature.

Truncated Fixed Effects: Only observe $y_{i t}$ when $y_{i t}^{\star}>0$

- When data are truncated, we cannot eliminate the fixed effects by differencing or mean differencing.
- For observed $y_{i t}$:

$$
\begin{aligned}
y_{i t} & =\mathbb{E}\left[y_{i t}^{\star} \mid \boldsymbol{x}_{i t}, \alpha_{i}, y_{i t}^{\star}>0\right]+\nu_{i t} \\
& =\alpha_{i}+\boldsymbol{x}_{i t}^{\prime} \boldsymbol{\beta}+\mathbb{E}\left[\varepsilon_{i t} \mid \varepsilon_{i t}>-\alpha_{i}-\boldsymbol{x}_{i t}^{\prime} \boldsymbol{\beta}\right]+\nu_{i t}
\end{aligned}
$$

- Consider the $T=2$ case. Taking differences:

$$
\begin{aligned}
y_{i 2}-y_{i 1}= & \left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}+\mathbb{E}\left[\varepsilon_{i 2} \mid \varepsilon_{i 2}>-\alpha_{i}-\boldsymbol{x}_{i 2}^{\prime} \boldsymbol{\beta}\right]- \\
& \mathbb{E}\left[\varepsilon_{i 1} \mid \varepsilon_{i 1}>-\alpha_{i}-\boldsymbol{x}_{i 1}^{\prime} \boldsymbol{\beta}\right]+\nu_{i 2}-\nu_{i 1}
\end{aligned}
$$

- In general, this still depends on α_{i} (unless $\boldsymbol{x}_{i 1}=\boldsymbol{x}_{i 2}$)

Honoré (1992)

- Suppose we restricted our analysis to observations satisfying

$$
y_{i 1} \geq-\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta} \quad \text { and } \quad y_{i 2} \geq\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}
$$

- Suppose that $\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}>0(\exists$ similar argument for the opposite case $)$. Then:

$$
\begin{aligned}
& \mathbb{E}\left[y_{i 2} \mid \boldsymbol{x}_{i 2}, \alpha_{i}, y_{i 2} \geq\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right] \\
& =\alpha_{i}+\boldsymbol{x}_{i 2}^{\prime} \boldsymbol{\beta}+\mathbb{E}\left[\varepsilon_{i 2} \mid \varepsilon_{i 2} \geq-\alpha_{i}-\boldsymbol{x}_{i 2}^{\prime} \boldsymbol{\beta}+\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right] \\
& =\alpha_{i}+\boldsymbol{x}_{i 2}^{\prime} \boldsymbol{\beta}+\mathbb{E}\left[\varepsilon_{i 2} \mid \varepsilon_{i 2} \geq-\alpha_{i}-\boldsymbol{x}_{i 1}^{\prime} \boldsymbol{\beta}\right]
\end{aligned}
$$

- Since $\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}>0$, the restriction doesn't bind for $y_{i 1}$:

$$
\begin{aligned}
\mathbb{E}\left[y_{i 1} \mid \boldsymbol{x}_{i 1}, \alpha_{i}, y_{i 1} \geq-\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right] & =\mathbb{E}\left[y_{i 1} \mid \boldsymbol{x}_{i 1}, \alpha_{i}, y_{i 1} \geq 0\right] \\
& =\alpha_{i}+\boldsymbol{x}_{i 1}^{\prime} \boldsymbol{\beta}+\mathbb{E}\left[\varepsilon_{i 1} \mid \varepsilon_{i 1} \geq-\alpha_{i}-\boldsymbol{x}_{i 1}^{\prime} \boldsymbol{\beta}\right]
\end{aligned}
$$

Honoré (1992)

- If we assume the $\varepsilon_{i t} \mid \boldsymbol{x}_{i t}, \alpha_{i}$ are iid, then:

$$
\mathbb{E}\left[\varepsilon_{i 1} \mid \varepsilon_{i 1} \geq-\alpha_{i}-\boldsymbol{x}_{i 1}^{\prime} \boldsymbol{\beta}\right]=\mathbb{E}\left[\varepsilon_{i 2} \mid \varepsilon_{i 2} \geq-\alpha_{i}-\boldsymbol{x}_{i 1}^{\prime} \boldsymbol{\beta}\right]
$$

- Therefore

$$
\begin{aligned}
\mathbb{E}\left[y_{i 1} \mid \boldsymbol{x}_{i 1}, \alpha_{i}, y_{i 1} \geq-\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right] & =\alpha_{i}+\boldsymbol{x}_{i 1}^{\prime} \boldsymbol{\beta}+\mathbb{E}\left[\varepsilon_{i 1} \mid \varepsilon_{i 1} \geq-\alpha_{i}-\boldsymbol{x}_{i 1}^{\prime} \boldsymbol{\beta}\right] \\
\mathbb{E}\left[y_{i 2} \mid \boldsymbol{x}_{i 2}, \alpha_{i}, y_{i 2} \geq\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right] & =\alpha_{i}+\boldsymbol{x}_{i 2}^{\prime} \boldsymbol{\beta}+\mathbb{E}\left[\varepsilon_{i 1} \mid \varepsilon_{i 1} \geq-\alpha_{i}-\boldsymbol{x}_{i 1}^{\prime} \boldsymbol{\beta}\right]
\end{aligned}
$$

- Together:

$$
\begin{aligned}
& \mathbb{E}\left[y_{i 2}-y_{i 1} \mid \boldsymbol{x}_{i 1}, \boldsymbol{x}_{i 2}, \alpha_{i}, y_{i 1} \geq-\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}, y_{i 2} \geq\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right] \\
& =\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}
\end{aligned}
$$

which no longer depends on the fixed effect α_{i}.

- This only requires the iid assumption. We don't assume anything about the distribution of $\varepsilon_{i t}$.

Honoré (1992): Estimation when $T=2$

- If we knew the true $\boldsymbol{\beta}$, we could estimate it with OLS in the model:

$$
y_{i 2}-y_{i 1}=\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}+\nu_{i 2}-\nu_{i 1}
$$

using the sample where:

- $y_{i 1} \geq-\left(x_{i 2}-x_{i 1}\right)^{\prime} \boldsymbol{\beta}$
- $y_{i 2} \geq\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}$
- However, we do not know $\boldsymbol{\beta}$.

Honoré (1992): Estimation

- Honoré (1992) proposes the following objective:

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\arg \min } \sum_{i=1}^{N} & \left\{\left[y_{i 2}-y_{i 1}-\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right]^{2}\right. \\
& \times \mathbb{1}\left\{y_{i 1} \geq-\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}, y_{i 2} \geq\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right\} \\
& +y_{i 1}^{2} \mathbb{1}\left\{y_{i 1} \geq-\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}, y_{i 2}<\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right\} \\
& \left.+y_{i 2}^{2} \mathbb{1}\left\{y_{i 1}<-\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}, y_{i 2} \geq\left(\boldsymbol{x}_{i 2}-\boldsymbol{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right\}\right\}
\end{aligned}
$$

Honoré (1992): Estimation

- Why the 2nd and 3rd term?
- Consider the single regressor case.
- Suppose we estimated β by minimizing:

$$
\sum_{i=1}^{N}\left[y_{i 2}-y_{i 1}-\left(x_{i 2}-x_{i 1}\right) \beta\right]^{2} \mathbb{1}\left\{y_{i 1} \geq-\left(x_{i 2}-x_{i 1}\right) \beta, y_{i 2} \geq\left(x_{i 2}-x_{i 1}\right) \beta\right\}
$$

- By setting β sufficiently large or small, no $y_{i 1}$ and $y_{i 2}$ will satisfy $y_{i 1} \geq-\left(x_{i 2}-x_{i 1}\right) \beta$ and $y_{i 2} \geq\left(x_{i 2}-x_{i 1}\right) \beta$ simultaneously for any i.
- The objective function would then be zero, its lowest possible value.
- The inclusion of the 2nd and 3rd term excludes these trivial solutions.

Reading and References

- Cameron and Trivedi 23.5 for Random effects Tobit.
- Hsiao 8.4 and Honoré (1992) for Truncated Fixed Effects.

References:

Honoré, B. E. (1992): "Trimmed LAD and least squares estimation of truncated and censored regression models with fixed effects," Econometrica, 533-565.

