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Censored Data
▶ yit is censored when it is partly continuous but has positive probability mass at one or

more points.

▶ For example, yit is continuous when yit > 0 but has a large mass at yit = 0.

▶ We can sometimes think of the underlying model as:

y⋆
it = αi + x ′

itβ + εit

but we observe:

yit =

{
y⋆
it if y⋆

it > y

y if y⋆
it ≤ y

or yit =

{
y if y⋆

it ≥ y

y⋆
it if y⋆

it < y

▶ For example, top-coded income.

▶ Other times we can think of y or y as a corner solution of an optimization problem.

▶ For example, hours worked, firm expenditure on R&D.
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Histogram of censored yit left of zero
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Truncated Data

▶ Our sample may be truncated, where our sample only has observations where yit > y or
yit < y

▶ For example, we may only observe people who work.
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Histogram of truncated yit
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Models in this Topic

▶ Static Censored Random Effects

▶ Static Truncated Fixed Effects

▶ It is possible to estimate Static & Dynamic Censored Fixed Effects models, but we won’t
cover them here.
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Censored Data: Panel Random Effects Tobit Model

▶ We consider the left-censored data case where y = 0.

▶ We observe:

yit =

{
y⋆
it if y⋆

it > 0

0 if y⋆
it ≤ 0

▶ Let dit = 1 {yit > 0}.
▶ If εit ∼ N

(
0, σ2

ε

)
, then using εit = y⋆

it − αi − x ′
itβ, the joint conditional density of

y i = (yi1, . . . , yiT ) is

f
(
y i

∣∣X i , αi ,β, σ
2
ε

)
=

T∏
t=1

[
1

σε
ϕ

(
yit − αi − x ′

itβ

σε

)]dit [
1− Φ

(
αi + x ′

itβ

σε

)]1−dit

where X i = (x i1, . . . , x iT ) and ϕ and Φ are the pdf and cdf of the standard normal
distribution respectively.
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Censored Data: Panel Random Effects Tobit Model

▶ If we model αi ∼ N
(
0, σ2

α

)
, then we can integrate out the αi :

f
(
y i

∣∣X i ,β, σ
2
ε, σ

2
α

)
=

∫ ∞

−∞
f
(
y i

∣∣X i , αi ,β, σ
2
ε

) 1√
2πσ2

α

exp

(
−α2

i

2σ2
α

)
dαi

▶ There is no closed-form solution for the likelihood and therefore needs to be computed
using simulation methods.

▶ We can perform the same change of variables as with the probit random effects and
approximate the integral with Gauss-Hermite quadrature.
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Truncated Fixed Effects: Only observe yit when y ⋆it > 0

▶ When data are truncated, we cannot eliminate the fixed effects by differencing or mean
differencing.

▶ For observed yit :

yit = E [y⋆
it |x it , αi , y

⋆
it > 0] + νit

= αi + x ′
itβ + E [εit |εit > −αi − x ′

itβ] + νit

▶ Consider the T = 2 case. Taking differences:

yi2 − yi1 =(x i2 − x i1)
′
β + E [εi2|εi2 > −αi − x ′

i2β]−
E [εi1|εi1 > −αi − x ′

i1β] + νi2 − νi1

▶ In general, this still depends on αi (unless x i1 = x i2)
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Honoré (1992)

▶ Suppose we restricted our analysis to observations satisfying

yi1 ≥ − (x i2 − x i1)
′
β and yi2 ≥ (x i2 − x i1)

′
β

▶ Suppose that (x i2 − x i1)
′
β > 0 (∃ similar argument for the opposite case). Then:

E
[
yi2|x i2, αi , yi2 ≥ (x i2 − x i1)

′
β
]

= αi + x ′
i2β + E

[
εi2|εi2 ≥ −αi − x ′

i2β + (x i2 − x i1)
′
β
]

= αi + x ′
i2β + E [εi2|εi2 ≥ −αi − x ′

i1β]

▶ Since (x i2 − x i1)
′
β > 0, the restriction doesn’t bind for yi1:

E
[
yi1|x i1, αi , yi1 ≥ − (x i2 − x i1)

′
β
]
=E [yi1|x i1, αi , yi1 ≥ 0]

=αi + x ′
i1β + E [εi1|εi1 ≥ −αi − x ′

i1β]
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Honoré (1992)
▶ If we assume the εit |x it , αi are iid, then:

E [εi1|εi1 ≥ −αi − x ′
i1β] = E [εi2|εi2 ≥ −αi − x ′

i1β]

▶ Therefore

E
[
yi1|x i1, αi , yi1 ≥ − (x i2 − x i1)

′
β
]
= αi + x ′

i1β + E [εi1|εi1 ≥ −αi − x ′
i1β]

E
[
yi2|x i2, αi , yi2 ≥ (x i2 − x i1)

′
β
]
= αi + x ′

i2β + E [εi1|εi1 ≥ −αi − x ′
i1β]

▶ Together:

E
[
yi2 − yi1|x i1, x i2, αi , yi1 ≥ − (x i2 − x i1)

′
β, yi2 ≥ (x i2 − x i1)

′
β
]

= (x i2 − x i1)
′
β

which no longer depends on the fixed effect αi .

▶ This only requires the iid assumption. We don’t assume anything about the distribution of
εit .
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Honoré (1992): Estimation when T = 2

▶ If we knew the true β, we could estimate it with OLS in the model:

yi2 − yi1 = (x i2 − x i1)
′
β + νi2 − νi1

using the sample where:

▶ yi1 ≥ − (x i2 − x i1)
′ β

▶ yi2 ≥ (x i2 − x i1)
′ β

▶ However, we do not know β.
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Honoré (1992): Estimation

▶ Honoré (1992) proposes the following objective:

β̂ = argmin
β

N∑
i=1

{[
yi2 − yi1 − (x i2 − x i1)

′
β
]2

× 1
{
yi1 ≥ − (x i2 − x i1)

′
β, yi2 ≥ (x i2 − x i1)

′
β
}

+ y2
i11

{
yi1 ≥ − (x i2 − x i1)

′
β, yi2 < (x i2 − x i1)

′
β
}

+y2
i21

{
yi1 < − (x i2 − x i1)

′
β, yi2 ≥ (x i2 − x i1)

′
β
}}
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Honoré (1992): Estimation

▶ Why the 2nd and 3rd term?

▶ Consider the single regressor case.

▶ Suppose we estimated β by minimizing:

N∑
i=1

[yi2 − yi1 − (xi2 − xi1)β]
2
1 {yi1 ≥ − (xi2 − xi1)β, yi2 ≥ (xi2 − xi1)β}

▶ By setting β sufficiently large or small, no yi1 and yi2 will satisfy yi1 ≥ − (xi2 − xi1)β and
yi2 ≥ (xi2 − xi1)β simultaneously for any i .

▶ The objective function would then be zero, its lowest possible value.

▶ The inclusion of the 2nd and 3rd term excludes these trivial solutions.
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Reading and References

▶ Cameron and Trivedi 23.5 for Random effects Tobit.

▶ Hsiao 8.4 and Honoré (1992) for Truncated Fixed Effects.
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