Censored/Truncated Outcome Panel Data

Example Questions and Solutions

230347: Advanced Microeconometrics

Question 1

Tobit Random Effects Model

Consider the model:
y:t:ozi+m;tﬁ+5it Z:L,N til,...,T

iid iid .
where o; ~ N (O, Ui) and g4 ~ N (0, a?). A researcher observes x;; and y;; for each i, ¢, where:

*

v ifyn >0
0 if y;; <0

Note: You may write the pdf and cdf of the standard normal distribution as ¢ (-) and ® (-) respectively. If
z ~ N (p,0?), then the pdf of z is ¢ (2=£) = \/ﬁexp (Jg;*;)2>.

(a) What is individual i’s contribution to the likelihood at time ¢, f (yit|wit, ;, 3, af)?

(b) What is f (y,t- ’Xi, o, 3, ag), where X; = (%1, .., %), i.e. what is individual #’s contribution to the
likelihood?

(c) Write down individual ¢’s contribution to the likelihood after the random effect c; has been integrated

out, f (y,t- |X1-, 3,02, 02 ) Write your answer in the form:

[SRigNe’]
o0
f(v; | X, 8,0%,02) :/ f (@i | X101 8.0%) fu (01, 02) dov
o0

(d) Perform a change in variables to be able to write f (yl ‘Xi, 8,02, 03) in the form:

oo

f (yz ‘Xiw@aa—gvo-i) :/ g (rivyi7Xi7/37U§an) exp (_Tf) dri

— 00

(e) Using (d), describe how you would estimate the model’s parameters, (,8, ai), in practice.



Solution

(a) When we observe y;; = 0, it means that y} < 0 which occurs with probability:

Pr (yz*t S O |Xi7ai7670'?) - ) +mzt/8+€’tt < O|XZaalvﬁa 5)

< O[Z—Il?ltﬁ|X'Laa2aﬁ7 s)

Pr (a;
o (e
(255

Il
S

When we observe y;x > 0, yir = yi, where y}|zi, a;, 8,02 ~ N (o +@},8,02). Then density of
Y |@ie, o, B, 02 is then ¢ (M) Let di; = 1 {y;; > 0}. Then:

Oc

/ dit ’ 1—dit
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(d) Let r; = \/0“7 s0 a; = /202r;. Then do; = \/202dr;. Using these:
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(e) This integral for the likelihood can be approximated using Gauss-Hermite quadrature. For H evaluation

points (e.g. 12), tables or software will give you evaluation nodes zj; and weights wy,. The approximation

for individual 7’s contribution to the likelihood is then:

(y1|X17/ga O¢, (,y) %.]’E’(yi|Xi7/670—§50—(21)
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You would then estimate (ﬁ, o2 02) by maximizing the (approximated) log likelihood:

a? g

N

(5.52.32) = g S o (7 0, X,08.02.2)

(B,03:02) i=1

Question 2

Honoré (1992) Truncated Least Squares

Consider the following data generating process:
y;t:aiJFiC;tﬁJré?it, i=1,...,N t=1,2

where €;¢ A (O, O'?).
A researcher observes y;; = y5 and x;+ when y}; > 0 and does not observe data when y;; < 0.
Note: T X ~ N (1, 0%), then E [X|X > a] = p+ 01285, where b= £,

(a) Find E [yi¢|as, Zit, B, yir > 0]

(b) Show that E [y;a|c, @ia, B, yiz > 0] — E [yi1|ai, i1, B, yi1 > 0] in general depends on «;.

(¢) Show that if the researcher knew 3 and restricted their sample according to:
yir > — (T2 — 1)’ B and iz > (T2 — 1) B
the difference:
E [yi2| X, i, B, yi2 > (22 — @i1)' B] — E [ya| X, o, B,y > — (T2 — 1)’ B]

is a constant function of «; (does not depend on «;), where X; = (x;1,@;2). You should consider each

of the three cases:
(a) (CEZ'Q — $i1)/,8 < 0
(b) (@i2 — 1)’ B=0
(C) (wiQ — CL‘“)/,@ >0

Solution
(a)
E [yit|ai, zit, B, yir > 0] = E [ + 2,8 + eit|ovi, ®it, By yir > 0]
=ao; + w;tﬂ + E[eit]ovi, xir, B, €3¢ > —a; — wétﬁ]
oo (2l
1— @ (77(1&;@)

= a; + i, +

O¢



E [yis|ai, @2, B, yiz > 0] — E [yi1 |, i1, B, yir > 0]

) (M) oo (M)
= (@ "”“Wﬂ@(W) 1= o (~22t)

O¢ O¢

Unless x;; = x;2, the terms containing «; do not cancel.

(c) o Case 1: (xo—x1) B <O0.
The truncation does not affect y;o but does affect y;1:
E [yia| Xi, 0, B, yi2 > (xi2 — 1) B] — E [yan| X5, 0, B,y > — (Ti2 — 1)’ B]
=E [y;2| X, 5, B, yiz > 0] — E [yi1| X4, i, By + Ty B+ i1 > — (a2 — xi1)' B]
= E [yi2| Xi, o, 8,62 > —vi — ®p08] — E [yir| X, 5, 8,601 > —vi — @} 0]
oot ( az_mbgﬁ) o.b ( az—:cﬂ,@)
/
= (Zi2 — & + 7 - 7
( 2 1) ﬁ 17¢<*ai7mi2ﬁ> 17(1)(7011'7:1:1.2,8)

O¢ Oe

= (iL‘iz - $i1)/ﬁ

e (Case 2: (xiQ — azﬂ)/ﬂ =0.
Neither y;; nor y; are affected by the additional truncation. From (b) we can see that when

x} B = )50, the two inverse Mills ratio terms will cancel and the difference is zero in expectation.

e Case 3: (w0 — IBﬂ)//B > 0.
The truncation does not affect y;; but does affect y;o:

E [yi2|Xi7aiaﬂayi2 > (Ti2 — wﬂ)/ﬁ] —E [yi1|Xi7O¢i,57yz‘1 > — (i — wil)/ﬁ]
=E [yio| Xi, i, B, i + TioB+ €12 > (Ti2 — 1) B] — E [ya| X4, i, B, yi1 > 0]
= E[yi2| Xi, a4, 8,00 > —a; — 1 B8] — E [y | X4, i, 8,601 > —a; — 1 0]

o ay gy T CIEE) oo ()
= (T2 —Tq1) O+ ; - —
1-® (7"1’;%6) 1-® (7‘“1‘%")

Oc

= (iEiz - wi1>/13

In all three cases, the difference is a constant function of «;.

Question 3

Honoré and Weidner (2020)

Suppose the outcome variable y;; is binary. We assume y;; is generated according to a dynamic logit model
where the probability that y;; = 1 is a function of its one-period lag y;:—1, a vector of strictly exogenous

regressors, x;; and an unobserved individual fixed effect o; € R. We assume the initial period y;; is generated



according to an unspecified function py (@;1, ;). Therefore:

Pr(yi = Ui, as, p, B) = p1 (xi1, )

__exp (pyit—1 + B + ;)
1+ exp (pyit—1 + x, 08 + ;)

Pr (yit = 1Yit—1, Tit, a4, p, B) fort > 1

We observe N individuals at time periods ¢ = 1,2,...,7T. In what follows we will restrict ourselves to T' = 4.
We can use a set of moments to estimate (p,3). We look for moments in such a way that they are

independent of the «;:

E[m (y;,xs, p, B) lyi1, i, ;] = 0 Va; € R

where @; = (@1, ...,2;7). One moment that satisfies this is:
exp ((zi2 — zi3)' B) if (i1, yiz, vis» via) = (0,0,1,0)
exp ((zi2 — i) B—p) i (Yi1, Yiz, yiz yia) = (0,0, 1, 1)
mg (yi;mingap) = -1 if (yi17yi25yi3) = (03170)
)

exp ((zia — i3) B — 1) if (i, iz, vis, ia) = (0,1,1,0)

0 otherwise

Alternatively expressed, m{ () for every combination (y;2,¥is, yia) € {0, 1}3 is shown in the table below:

it | (Yiz, Yz, yia) | m§ (Y, x4, B, p)

0 | (0,0,0) 0

0 | (0,0,1) 0

0 | (0,1,0) exp ((zi2 — zi3)' B)

0 | (0,1,1) exp (@i — i) B p)
0 | (1,0,0) -1

0 | (1,0,1) -1

0 | (1,1,0) exp ((zia —zi3) B) — 1
0 | (1,1,1) 0

(i) Show that this moment restriction is valid. That is, show that:
Emg (i, i, 8, p) [y = 0,24, ;] = 0

where

4
E[mg (y;, i, 8, p) lyin = 0, @i, o] = Z H Pr (yit|yie—1, it i, p, B) mg (Y5, i, B, p)
(yiz,yia,yia) €{0,1}3 t=2

(ii) Given this moment condition is valid, assume now that you have 3 other valid moment conditions:
mb (y,;, zi, B, p), mé (y,,x;,3,p) and m& (y,;,x;,3,p). These are shown in the table below but you

don’t need them to answer this question.

In the lectures, we saw that for this particular model if we condition on the events y;2 + y;3 = 1 and



X3 = x,4, the conditional likelihood was no longer a function of «; and we could estimate (p, 3) with
maximum likelihood. Given we have these valid moment conditions that do not depend on «;, what
do these imply about the estimation approach we discussed in the lectures? Which approach would be
better to use?

A verbal discussion is all that is necessary to answer this question. No derivations are required.

yir | (Y2, yiss Yia) | MG (Yir @i, By p) mg (y;, i, 3, p)
0 | (0,0,0) 0 0
0 |(0,0,1) 0 exp ((zi3 — 1) B) — 1
0 |(0,1,0) exp (@2 — zi3)' B) -1
0 (0,1,1) eXp ((mﬂ - wi4)/ B — P) -1
0 | (1,0,0) -1 exp ((zia — zi2)' B)
0 | (1,0,1) -1 exp ((xis — xi2) B+ p)
0 | (1,1,0) exp (@i —xi3) B) —1 | 0
0 | (,1,1) 0 0
vir | (Yiz, v, Yia) | mi (Y, i, B, p) mlf (Yi i, B, p)
1 |(0,0,0) 0 0
1 |(0,0,1) 0 exp ((zi3 —zi4)' B) — 1
1 | (0,1,0) exp ((Tiz — wi3) B+ p) | —1
1 ](0,1,1) exp ((@i2 — i)' B) -1
1 | (1,0,0) -1 exp ((zia — zi2) B — p)
1 (1,0,1) -1 exp ((:1:13 — ;) ,3)
1 | (1,1,0) exp (@i —xi3) B) —1 | 0
1] (1,1,1) 0 0
Solution
(i) We want to show that:
4
E[m§ (yi, @i, 8, p) lyir = 0, @i, i) = Z H Pr (yit|yie—1, it i, p, B) mg (Y5, i, B, p)
(Yiz,Yi3,yia) €{0,1}% t=2
=0

There are 8 terms in the sum (every combination of (y;2,v:3,yi4) € {0, 1}3)7 but the combinations
(0,0,0), (0,0,1) and (1,1,1) have m& = 0 so we can remove those from the sum. This leaves us with 5

terms:



(0,1,0)
(0,1,1)
(1,0,0)
(1,0,1)

(1,1,0)

’ X ’
1 eTisBei 1 e®i2B n
1+ e®iaBeai | 4 e%isBeai | 4 eTiaBereai ~ %ish
1 e®iaPei eTiaPep i e%i2P
X
14 eTizPei 1 4 eTisPei 1 4 eTiaPereai ~ eTisPer
eTiBeai 1 1
x (=1)+
1+ e®iaBeai 1 + ePisBerei 1 + eiaBewi (=)
eTiaB i 1 eTiaBei )
X (—1)+
1 + e®i2Bexi 1 4 e®isBerei 1 4 e®iaBewi (=1
e®i2Pei eTisPepei e®iaP
x —
1 4 eTizPei | 4 eTisPerei 1 4 eTiaPerei e®ish

)

Note that for the 3rd and 4th term, the expressions are identical expect for the 3rd fraction in the

product. However, these fractions sum to 1 so we can combine them to —

this, cancelling some terms and rearranging:

eTiaBeci 1 1

1+ e®iaBeti 1 + ®isBei 1 4 eTiaBepeai +
eTiaBeti  o®i3Boai 1

1 4 eTi2Beoi 1 + Tish 1 + eTiaBereni
eTi2B i 1

1+ e%i2Bei 1 4 e%isBerecs x (=1)+
eTi2B e eTiaBep o 1

’
emiZBeai

1

ew,/M,B

1+ ei2Bei 1 4 e%isBerei 1 + e®iaPBerec:

d

e’%sﬁ

)

’ ’
1+e®i2Peri 14eTizPerei

. Doing

Now the first two terms are the same except for the 2nd fraction. But these two fractions sum to 1 so

we can combine them to

rearranging):

!
e®iaBe%i 1

U U
14e®i2Pei 14e®iaPereai

e®iaP i 1
1+ e®izBei 1 + eTiaBereai
x' 8 a;
ePizP e 1
x (—=1)+
1+ e%i2Peai | 4 e%isPereai (=1
eTizB et 1 eiaBepei

1+ e®izBeai 1 + eTisBereai 1 4 eTiaPerei

eTizB et eisBepei 1

1 4 e®i2Pei 1 4 eTisPerei | 4 eTiaPerei

,1)

. Doing this and expanding the last term (with some



@B . . .
e ¢’ js common to all parts of the sum, we can write this as:

Since
l+em;2ﬁe°‘i

1
1 + e®isPerexi

eTiaBepeti
; -1
1+ e®iaPerexi

__emaler T 1 1 N 1 1
1+ eTiaBeai |1+ e%iBereai | 14 e®isBereci 1+ e®isPereai 1+ e®iaPerewi

_emaBeri [ 1 1 1 1
1+ e®iaPei |1 4 eTiaBerei 1 4 eTisBerexi 1+ e®isBerei 1 4 eTiaBerei

eTiaP oo 1 eTiaPep e
1 4 eTisPerei

1+ e®i2Peai | 1 4 e®iaBereci

=0
Therefore this moment restriction is valid.

(ii) Using these moment restrictions we can estimate the model without restricting ourselves to the subsam-
ple where x;3 = x;4. This is especially useful in situations where we have continuous variables or many

covariates where this is unlikely to hold. Furthermore, observations where y;o + yi;3 = 0 (yi2 + yiz = 2)

are still used to identify 3, provided y;4 = 1 (y:4 = 0).



