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Count Data

In this section, our outcome variable yit only takes non-negative integer values: yit ∈ {0, 1, 2, . . . }

yit is the number of times an event occurs for i during time period t.

Examples:

▶ Number of patents filed (measure of innovation).

▶ Number of doctor visits.

▶ Number of absent days (at work/school).

▶ Number of accidents.
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This Lecture

In this lecture we will study:

▶ The Poisson distribution.

▶ Static fixed effects Poisson

▶ Static random effects Poisson

▶ Excess zeros in yit .

▶ Dynamic fixed effects Poisson
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Poisson Distribution

The Poisson distribution is often used to model count data.

The discrete random variable Y counts the number of times an event occurs in one time period.

If Y follows a Poisson distribution with rate µ > 0, the probability of an event happening y times
in a time period is:

Pr (Y = y) =
exp (−µ)µy

y !

where y ∈ {0, 1, 2, . . . }.

The mean and variance of Y is µ.
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CDF of the Poisson Distribution for µ ∈ {1, 5, 10}
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Static Fixed Effects Poisson

We model yit to be Poisson distributed with rate µit , where:

µit = αi exp (x
′
itβ) = αiλit

αi ≥ 0 is a multiplicative fixed effect.

▶ Defining αi = eδi gives µit = eδi exp (x ′
itβ) = exp (δi + x

′
itβ)

In this model we can remove the fixed effect in three different ways:

▶ Concentrating out αi from the log likelihood.

▶ A mean-differencing transformation.

▶ Conditioning on a sufficient statistic (
∑T

t=1 yit here like in the logit case).

⋆ This third case is left as an exercise.
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Likelihood

Each observation’s contribution to the likelihood is:

Pr (yit |αi ,β) =
exp (−αiλit) (αiλit)

yit

yit !

If the yit are iid, the i ’s contribution to the likelihood is:

Pr (yi1, . . . , yiT |αi ,β) =
T∏
t=1

exp (−αiλit) (αiλit)
yit

yit !

=
exp

(
−αi

∑T
t=1 λit

)∏T
t=1 α

yit
i

∏T
t=1 λ

yit
it∏T

t=1 yit !
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Log Likelihood

The log likelihood for individual i is:

log (Pr (y i |αi ,β)) = log

exp
(
−αi

∑T
t=1 λit

)∏T
t=1 α

yit
i

∏T
t=1 λ

yit
it∏T

t=1 yit !


=− αi

T∑
t=1

λit +
T∑
t=1

yit log (αi ) +
T∑
t=1

yit log (λit)−
T∑
t=1

log (yit !)

Taking the first-order condition with respect to αi :

−
T∑
t=1

λit +

∑T
t=1 yit
αi

= 0 =⇒ αi =

∑T
t=1 yit∑T
t=1 λit

∀i

8 / 22



Concentrated Log Likelihood
Substituting αi =

∑T
t=1 yit∑T
t=1 λit

∀i into the log likelihood function:

log (Lconc (β))

=
N∑
i=1

[
−αi

T∑
t=1

λit +
T∑
t=1

yit log (αi ) +
T∑
t=1

yit log (λit)−
T∑
t=1

log (yit !)

]

=
N∑
i=1

[
−

T∑
t=1

yit +
T∑
t=1

yit log

(∑T
t=1 yit∑T
t=1 λit

)
+

T∑
t=1

yit log (λit)−
T∑
t=1

log (yit !)

]

Dropping constant terms leaves us with:

log (Lconc (β)) ∝
N∑
i=1

T∑
t=1

yit log

(
λit∑T
s=1 λis

)

=
N∑
i=1

T∑
t=1

yit log

(
exp (x ′itβ)∑T
s=1 exp (x

′
isβ)

)
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Concentrated Log Likelihood

Estimating β via maximizing the concentrated likelihood:

β̂ = argmax
β

N∑
i=1

T∑
t=1

yit log

(
exp (x ′itβ)∑T
s=1 exp (x

′
isβ)

)

is consistent for fixed T as N → ∞.

If
∑T

t=1 yit = 0 for any individual, they do not contribute to the log likelihood.

▶ αi = 0 in this case, which predicts yit = 0 ∀t perfectly for any value of β.

10 / 22



First-Order Conditions

The concentrated log-likelihood can be rewritten as:

N∑
i=1

T∑
t=1

yit log

(
exp (x ′

itβ)∑T
s=1 exp (x

′
isβ)

)
=

N∑
i=1

T∑
t=1

yit

[
x
′
itβ − log

(
T∑
s=1

exp
(
x
′
isβ
))]

Differentiating with respect to β yields the first-order conditions (recall λit = exp (x ′itβ)):

N∑
i=1

T∑
t=1

yit

[
x it −

1∑T
s=1 exp (x

′
isβ)

(
T∑
s=1

exp (x ′isβ) x is

)]
= 0

N∑
i=1

T∑
t=1

yit

[
x it −

∑T
s=1 λisx is∑T
s=1 λis

]
= 0

N∑
i=1

T∑
t=1

x it

[
yit −

λit

λ̄i

ȳi

]
= 0
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Mean-Differencing Transformation
The first-order condition from the concentrated log likelihood is precisely the sample analogue from
a mean-differencing transformation.

In our model E [yit |x i1, . . . , x iT ] = αiλit = αi exp (x
′
itβ).

Suppose we do the following transformation:

E
[
yit −

λit

λ̄i

ȳi

∣∣∣∣ x i1, . . . , x iT] = αiλit −
λit

λ̄i

αi λ̄i = 0

By the law of iterated expectations (E [Z ] = E [E [Z |X ]]):

E
[
x it

(
yit −

λit

λ̄i

ȳi

)]
= E

[
E
[
x it

(
yit −

λit

λ̄i

ȳi

)∣∣∣∣ x i1, . . . , x iT]]

= E

x it E [(yit − λit

λ̄i

ȳi

)∣∣∣∣ x i1, . . . , x iT]︸ ︷︷ ︸
=0


= 0
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Mean-Differencing Transformation

We can now estimate β with the method of moments using the sample analogue:

N∑
i=1

T∑
t=1

x it

[
yit −

λit

λ̄i

ȳi

]
= 0

which is exactly the same as the first-order condition for β from the concentrated log likelihood.

β is then estimated by finding the β that makes the left-hand-side of the above exactly zero.

13 / 22



Poisson Random Effects

yit |αi , λit is distributed iid Poisson with rate αiλit , as before.

However, now we assume that the αi are iid, and independent of x it .

We can write the likelihood of yi1, . . . , yiT as:

Pr (yi1, . . . , yiT |λit ,θα) =

∫ ∞

0

Pr (yi1, . . . , yiT |αi , λit) f (αi ,θα) dαi

=

∫ ∞

0

[
T∏
t=1

Pr (yit |αi , λit)

]
f (αi ,θα) dαi

If we specify a distribution for the αi that is known up to some parameters, we can integrate out
the αi .

With this we get the distribution of yi1, . . . yiT conditional on only λit .
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Gamma-Distributed Random Effects

Suppose we specify

f (αi , δ) =
δδ

Γ (δ)
αδ−1
i exp (−αiδ)

which is the density of the Gamma distribution with shape and rate parameter δ

After many steps (see exercises) we arrive at the likelihood:

Pr (y i , λit , δ) =

(
T∏
t=1

λyit
it

yit !

)
Γ
(∑T

t=1 yit + δ
)

Γ (δ)

(
δ∑T

t=1 λit + δ

)δ ( T∑
t=1

λit + δ

)−
∑T

t=1 yit

which does not depend on αi .

We can specify an alternative distribution for the αi (e.g. log normal), but only the Gamma
distribution will result in a closed-form solution (it is a conjugate of the Poisson).
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Excess Zeros
Often your dependent variable may contain more or fewer zeros than would be predicted by the
Poisson distribution. For example:
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Two models to deal with these type of data are the ZIP and Hurdle models.
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Excess Zeros

The Hurdle model uses a truncated Poisson for positive yit :

Pr (Yit = yit) =

{
π if yit = 0

(1− π) 1
1−e−αiλit

(αiλit)
yit e−αiλit

yit !
if yit ≥ 1

In the Zero-Inflated Poisson (ZIP) model, yit ∼ 0 with probability π and yit ∼ Poisson (αiλit) with
probability 1− π, so:

Pr (Yit = yit) =

{
π + (1− π) e−αiλit if yit = 0

(1− π) (αiλit)
yit e−αiλit

yit !
if yit ≥ 1

In both cases π could be a function of covariates (e.g. logit probabilities).
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Dynamic Count Models

We now introduce the lag of the dependent variable as an explanatory variable.

There are different possible functional forms.

One is called the exponential feedback model. With one lag it is:

yit = αi exp (ρyit−1 + x ′itβ) + uit

▶ A problem with the expondential feedback model, however, is that if ρ > 0, the model can be
explosive.

Another is called the linear feedback model. With one lag it is:

yit = ρyit−1 + αi exp (x
′
itβ) + uit
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Linear Feedback Model

The LFM is: yit = ρyit−1 + αi exp (x
′
itβ) + uit

We can quasi-difference the αi out as follows (with λit = exp (x ′itβ)):

(yit − ρyit−1)
λit−1

λit
− (yit−1 − ρyit−2) = (αiλit + uit)

λit−1

λit
− (αiλit−1 + uit−1)

= αiλit−1 + uit
λit−1

λit
− αiλit−1 − uit−1

= uit
λit−1

λit
− uit−1

Assuming E
[
uit

λit−1

λit
− uit−1

∣∣∣ yi1, . . . , yit−2, x i1, . . . , x it

]
= 0, we can use the LHS of the above as

moments to estimate ρ and β.
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Linear Feedback Model: Estimation via GMM

Let:

qit (θ) = (yit − ρyit−1)
λit−1

λit
− (yit−1 − ρyit−2)

where θ = (ρ,β)′.

From the previous slide: E [qit (θ) |yit1, . . . , yit−2, x i1, . . . , x it ] = 0.

Let q i (θ) = (qi3 (θ) , . . . , qiT (θ))′.

Let Z i be a valid instrument matrix for i so E
[
Z ′

iq i (θ)
]
= 0.

For example, with T = 4 with 1 regressor xit we could use:

Z i =

(
yi1 0 0 xi2 0
0 yi1 yi2 0 xi3

)
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Linear Feedback Model: Estimation via GMM

Estimation via GMM is then:

θ̂k = argmin
θ

[
1

N

N∑
i=1

Z ′
iq i (θ)

]′
W−1

k

[
1

N

N∑
i=1

Z ′
iq i (θ)

]

where W 1 could be the identity matrix or:

W 1 =
1

N

N∑
i=1

Z ′
iZ i

and W 2 is:

W 2 =
1

N

N∑
i=1

[
Z ′

iq i

(
θ̂1

)] [
Z ′

iq i

(
θ̂1

)]′
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