Count Outcome Panel Data Models

230347 Advanced Microeconometrics
Tilburg University

Christoph Walsh

1/22



Count Data

@ In this section, our outcome variable y;; only takes non-negative integer values: y;; € {0,1,2,...}
@ y;; is the number of times an event occurs for i during time period t.
o Examples:

» Number of patents filed (measure of innovation).

> Number of doctor visits.

» Number of absent days (at work/school).

» Number of accidents.
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This Lecture

@ In this lecture we will study:

» The Poisson distribution.

v

Static fixed effects Poisson
» Static random effects Poisson

> Excess zeros in yi;.

v

Dynamic fixed effects Poisson
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Poisson Distribution

@ The Poisson distribution is often used to model count data.
@ The discrete random variable Y counts the number of times an event occurs in one time period.

o If Y follows a Poisson distribution with rate 1 > 0, the probability of an event happening y times
in a time period is:
—u)
pr(y =) = 22 L1
y!

where y € {0,1,2,...}.

@ The mean and variance of Y is p.
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CDF of the Poisson Distribution for 1 € {1,5,10}
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Static Fixed Effects Poisson

@ We model y;; to be Poisson distributed with rate p;;, where:
pie = ajexp (X} 3) = ajAie

@ «; > 0 is a multiplicative fixed effect.
» Defining a; = €% gives i = €% exp (x},3) = exp (6; + x/.3)

@ In this model we can remove the fixed effect in three different ways:
» Concentrating out «; from the log likelihood.
» A mean-differencing transformation.

» Conditioning on a sufficient statistic (3_,_, yi here like in the logit case).

* This third case is left as an exercise.
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Likelihood

@ Each observation’s contribution to the likelihood is:

ex —Oé,')\,' Oé,')\,' it
Pr (yielai, B) = al y_t?( 0
it:

o If the y;; are iid, the i's contribution to the likelihood is:

T .

]I exp (—ai)ie) (aihie) ™

Pr(y,-17...,y,-7—|a,-7g) — ( t?( t)
t=1 Yit:

T T e 71T ;
exp (704" 21 Aif) [le—y o TTemy A
HtT:1 Yit!
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Log Likelihood

The log likelihood for individual i is:

T T S
exp (_O‘i pra )‘it) [Teey o Ty N
HtT:1 Yie!

:—oz,Z/\,r+Zy,tlog aj +Zy,t|og it) Zlog (vie!)

log (Pr (y;|cvi, B)) =log

o Taking the first-order condition with respect to «;:

T T T
*ZAHM:O N Dy
t=1 i thl /\it
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Concentrated Lo%leellhood

==l 1y" Vi into the log likelihood function:
t 1 ’

@ Substituting a; =

log (Leonc (8))
N T
Z [ IZ)\lt+Zylt |0g Q;j +Zylt |Og It Zlog }/lt ]
i=1 t=1 t=1
N T Z y
=y l Zy,f+Zy,tlog< - ’t> +Zy,tlog ,t)—zlog ie! 1
i=1 t=1 Zt 1 A
@ Dropping constant terms leaves us with:
N A\
log (Lconc (3)) o Z Yir log (T’t>
i=1 Zs:l )‘fs

Il
o
10~ 1M+

Il
_

g (2200
o exp (x5)
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Concentrated Log Likelihood

e Estimating B via maximizing the concentrated likelihood:

5 — argmax N ep(ﬁ))
ag aZZy og(Z 5

i=1 t=1 1 exp (X]

is consistent for fixed T as N — oo.

o If Z;l yir = 0 for any individual, they do not contribute to the log likelihood.

» «; = 0 in this case, which predicts y;: = 0 Vt perfectly for any value of 3.
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First-Order Conditions

The concentrated log-likelihood can be rewritten as:
N T ox 3
ZZYII’ |0g <M> Zzylt |:X/t:3 |Og (Z exp X/sﬁ >:|
i=1 t=1 Z 1exp ( i=1 t=1

Differentiating with respect to 3 yields the first-order conditions (recall A\;; = exp (x/,3)):

N

i | Xip — ——————— exp (x}03) xis =0
ZZy[ ST en (Z Pl )

i=1 t=1 is

N T
Zstl )\isxis o
Z}/it Xit — ——7 | — 0
i 25:1 Ais ]

N T -
szlt l:.ylt ’t_ =0
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Mean-Differencing Transformation

@ The first-order condition from the concentrated log likelihood is precisely the sample analogue from
a mean-differencing transformation.

@ In our model E [yi|xi1, ..., XiT] = aj\ir = i exp (X}, 3).
@ Suppose we do the following transformation:

it _
E |:)/it - Tf)’i

1

Aie <
Xily--- 7X,'-r:| = ()éi)\it - TO&,')\,' =0

i
Xi17~'~7XiT:|:|

X1y 7XIT}

@ By the law of iterated expectations (E[Z] = E[E[Z|X]]):

it [ Ait _
E |:Xit <)/it - /—\:}/i)] =E _]E |:Xit (}/ir - 5\:}4‘)

it _
=E [x;: E K%‘t - 5\:)’,')

L =0
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Mean-Differencing Transformation

@ We can now estimate B with the method of moments using the sample analogue:

N T N
S xi [)/it - —It)_/,} =0
i=1 t=1 Ai

which is exactly the same as the first-order condition for 3 from the concentrated log likelihood.

@ [ is then estimated by finding the 3 that makes the left-hand-side of the above exactly zero.

13 /22



Poisson Random Effects

® yit|a, \ir is distributed iid Poisson with rate «;A;, as before.
@ However, now we assume that the «; are iid, and independent of x;;.

@ We can write the likelihood of y;1,...,yT as:

Pr(yit,...,yiT|Ait, 0a) :/ Pr(yit,...,yirloi, Aie) f (i, 0,) da
0

0o T
= /0 [H Pr(yit|ai;)\it)‘| f(a,-,Ha)da,-

t=1

o If we specify a distribution for the «; that is known up to some parameters, we can integrate out
the «;.

o With this we get the distribution of y;1, ... y;r conditional on only Aj.

14 /22



Gamma-Distributed Random Effects

@ Suppose we specify
56
f(a;,d) = ma?*l exp (—a;d)
which is the density of the Gamma distribution with shape and rate parameter ¢

o After many steps (see exercises) we arrive at the likelihood:

T e\ T (S0, yie+6 RS
xe\ (S0 v+ 9)
Priys Ae,0) = ([[1 yit!> I (6) t 1>\:t+5 Z)"f+6

t=1

which does not depend on «;.

@ We can specify an alternative distribution for the «; (e.g. log normal), but only the Gamma
distribution will result in a closed-form solution (it is a conjugate of the Poisson).
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Excess Zeros

@ Often your dependent variable may contain more or fewer zeros than would be predicted by the
Poisson distribution. For example:
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Excess Zeros

@ The Hurdle model uses a truncated Poisson for positive y;;:

if yir =0
if yirp >1

™
Pr(Yie=yir) = {(1 S S T T8 il
1—e— it Vit!

@ In the Zero-Inflated Poisson (ZIP) model, y;: ~ 0 with probability 7 and y;; ~ Poisson (ajA;) with
probability 1 — 7, so:

74 (1 — ) e it if yie =0
(1 _ 71') (ai/\it);‘i!e_ai’\it if yie > 1

Pr(Y,-t :)/it) = {

@ In both cases 7 could be a function of covariates (e.g. logit probabilities).
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Dynamic Count Models

@ We now introduce the lag of the dependent variable as an explanatory variable.
@ There are different possible functional forms.

@ One is called the exponential feedback model. With one lag it is:
yie = aiexp (pyie—1 + Xie8) + uir

> A problem with the expondential feedback model, however, is that if p > 0, the model can be
explosive.

@ Another is called the linear feedback model. With one lag it is:

Yie = pYie—1 + i exp (xj,3) + ui
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Linear Feedback Model

@ The LFM is: yjr = pyie—1 + ajexp (x},3) + uir

@ We can quasi-difference the «; out as follows (with A = exp (x,3)):

)\,‘ — )\i —
(vie — pyir—1) = L (Vie—1 — pyie—2) = (@idic + ui) = Lo (ciXie—1 + wvie—1)

it Ait
Nit—

= a1+ U = — QN1 — Ui
it

o Aie—1 U
it )\if it—1

Ait
moments to estimate p and (3.

. Nie—
@ Assuming E [u,-t =t — U1 Yit, -

ey Yit—2, Xi1y - - - ,x,-t] = 0, we can use the LHS of the above as
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Linear Feedback Model: Estimation via GMM

o Let: )
it—

qie (0) = (vie — pyie—1) " t — (Yie—1 — PYie—2)
it

where 8 = (p,8)’.

From the previous slide: E [gi (0) |yit1s - - - s Yie—2, Xi1, - - - s Xit] = 0.
Let q;(0) = (qi3(0),....qiT (6))".
o Let Z; be a valid instrument matrix for i so E [Z}q; (6)] = 0.

For example, with T = 4 with 1 regressor x;; we could use:

z._(yn 0 0 x2 O
' 0 yai yo 0 X3
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Linear Feedback Model: Estimation via GMM

Estimation via GMM is then:

N /
~ 1
O =argmin | =Y Ziq,(6)| W, !
— [Nz q(>] k

where W could be the identity matrix or:

L
N;Z§qi (9)]

LN
_ /
=N E V4V4

i=1

and W, is:

= w2 [2a (0] [z (0)]
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@ In Cameron and Trivedi's Microeconometrics: Methods and Applications, Section 23.7 covers count
panel data.

@ For more detail, Cameron and Trivedi's book Regression Analysis of Count Data. Chapter 9 covers
panel data.

o Windmeijer, Frank (2006) “GMM for panel count data models.”
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