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Introduction

» In this lecture we will allow y;; to also be a function of y;;_; in the linear model.
» We will show why we can no longer estimate the model with fixed effects (unless T — 00).
» We will discuss how to estimate dynamic linear models in different ways:

» Anderson-Hsiao First Difference IV

» Arellano-Bond Difference GMM

» Blundell-Bond System GMM
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Model

» Throughout this section we will be interested in estimating (p, 3) from:
Yit = pYie-1+ Xi;B + ai + €it

where
E [a,-] = E [E,‘t] = E [04,'5,'1»] = 0
» Here y;;_; is predetermined: it is independent of the current disturbance ¢;; but is
influenced by ;1.
» Samples will have “large N and small T".

» For demonstration purposes, we will often drop the covariates x;; to simplify notation.
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Nickell (1981) Bias

» Consider the following model without covariates:

Vit = pYie—1 + «; + €,  where € is iid over t and |p| < 1

» If we have T > 3 time periods, we can apply the within transformation to remove the «;:
Yie = Vi = p (Yie—1 — Vi—1) +€it — &

— 1 T -
where j; = 2= 3", yie and jio1 = 15 Y Vi
» The regressor y;;—1 — y;—1 is correlated with the error €, — &; as:
> £ contains €jr—1 which is correlated with yj;_1.

» yi_1 contains y; which is correlated with ¢j;
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Nickell (1981) Bias

» This correlation creates a bias that does not vanish as N — oo if T is fixed, so the FE
estimator is inconsistent.

» This bias as N — oo is approximately — (1 + p) /(T — 2) for reasonably large values of T.

> If T — oo, the bias goes to zero.
» For T = 3, the bias is exactly —3 (1 + p).
» If we can calculate the bias analytically, why not just correct the estimate ex-post?

> Kiviet (1995) shows how to do this, but it does not work for unbalanced panels, nor for the
possibility of other endogenous regressors.

> We will study different methods that do not require a correction.
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Demonstrating Nickell Bias with Simulations
If we generate 500 datasets with sample size N = 1000 and various T according to the model:

Yit = pYit—1 + @ + Ej
with g ~ N (0,1), o; ~ N (0,1) and p = 0.5, and estimate p via fixed effects we get the
following densities for the estimated ps:
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First Differencing: Anderson and Hsiao (1982)

> If we take first differences of the model y;: = pyir—1 + a; + €j+, we get:

Vit — Yie—1 = p (Vie—1 — Yit—2) + €it — €ir—1 fort=3,...,T

» yii_1 — yir—2 will still be correlated with €;; — €;;_1, and OLS estimates of p will be biased.

» yi_o, however, is correlated with y;;—1 — yi+—2, but not correlated with g — €j_1.
» Therefore, according to the model, yi:—» is a valid instrument for Ay;_1.

» yii—» — yir—3 would also be a valid instrument, but you would lose a time period for every
individual.
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First Differencing: Anderson and Hsiao (1982)

> The (T —2) x 1 instrument matrix would then be:
Z;i = (yin,Yis- -, yiT—2)

» For example, for T = 4, for each i, the moments are:

Yi1 ' €i3 — &2 -0
Yi2 €ia — &3

> If we were concerned that ¢;; was serially correlated, you could use further lags instead as
instruments. However, this would result in more dropped time periods.

E[Z!Aej] =E
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Arellano and Bond (1991)

>

>

While the Andserson-Hsiao estimator is consistent, it is not efficient, as it does not take
into account of all available moment conditions.

For the same reason that y;;_» is a valid instrument for Ay;;_1, yjr—3 is also a valid
instrument.

We can continue adding instruments this way, so y;1, yi2, ..., Yit—2 are all valid instruments
for Ay,'t,;[

But, adding further lags in the Anderson-Hsiao approach would result in more dropped
time periods.

For example, if T =4 and we use the 2nd and 3rd lag as instruments, we only have a
complete set of instruments for t = 4:

zi _ (yil . >
Yi2 Vil
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Holtz-Eakin et al. (1988)

> Holtz-Eakin et al. (1988) replaced the “dots” with zeros in the instrument matrix as each
column would still be orthogonal to the first-differenced errors, assuming E [y;;—2Aej] = 0.

» Constructing the instrument matrix this way in the T = 4 case means we can use the

t = 3 observations as well:
E y,1 yi2\ [Deis
vii) \QAcis

()/IIAEB + yI2A6I4):|

()

E ZAs,

0 +.y11A514
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Arellano-Bond Instrument Matrix

» Arellano-Bond construct a slightly different instrument matrix which adds additional
moments:

Zihe;=[0 yn YitAeis

yi O (A5-3> yinlej3
0 vy YioAcis

Aciy

» For T = 6, the instrument matrix would be:

ya 0 O O O O 0O 0 0 O
0 Yit Vi 0 0 0 0 0 0 0
0 0 O y1 y2 yz 0 0O 0 O
0 0 0 O 0 O y1 Yo Vi3 Va

Z; =
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GMM Estimation With One-Step Weight Matrix

» pis estimated by minimizing the GMM objective using an initial weight matrix W:

N !/
N ) 1 11
p1 = argmin (szi (P)) W11 <szi (P)>
where:
Ayiz — pAyin

m; (p) = ZiAei (p) = Z; (Dy; — pAy; ) = Z;

I

Ayt — pAyiT—1
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One-Step Weight Matrix

Software packages often use the following one-step weight matrix:
L
wi= 2; Z'HZ;
=

where H is D'D, and where D is the (T —2) x (T — 1) first difference operator:

1 -1 0 0 0 0 2 -1 0 0 0
-1 2 -1 0 0
01 -1 0 0 0
0o 0 1 -1 0 0 0 -1 2 - 0
D= H=10 0 -1 2 0
0 0 0 O 1 -1 o o o o 5
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GMM Estimation With Two-Step Weight Matrix

» The second-step weight matrix is formed using the residuals from the first step estimate p1:

N
Wo = &30 20 ()2 ()] 2,

i=1

» Using this weight matrix in the same objective gives the two-step estimate p5:

L ’Ail L
P2 = arg min (NZm; (p)> w, <NZm,- (p)>
P i=1

i=1
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Closed-Form Solution

» We can actually solve for px, k = 1,2 by taking first-order conditions of the GMM
objective function with respect to p.

» The objective function is:

Qi (p) =

N /
1 _
NZZ: (Ayi_pAyi,—l)] Wkl
i=1

N
1
R AG pAy,-,_l)]
i=1

» The first-order condition is:

N
20 i i

i=1

» Solving for p yields the k-th step estimator for p:
N / ! -1 N /
(Zi:l ZiAyi,fl) w, <Zi:1 ZiAyi)
= 7
(Z/N:1 z:'Ayi,—l) W/?I (ZINZI Z§A}’i,—1)
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Sargan/Hansen Test for Over-ldentification Restrictions

» In the model Ay, = pAy;—1 + Acje, with T =4 we have 3 moments to identify one
parameter.

» In general, there will be more moments than unknown parameters.
» When the model is overidentified, vazl Z!AE; # 0.

» The Sargan Test Statistic is:

N
Z Z/Ag;

i=1

!

J= ng ~ X,%—Kfl

N
Z Z/Ag;

i=1

where p is the number of instruments and K is the number of variables in x;; (zero in this
example).

» A low p-value indicates that the instruments may not be valid.
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Test for Autocorrelation

» Arellano and Bond (1991) also propose a test for second-order serial correlation for the
disturbances in the first-differenced equation.

> This is important, because consistency of the GMM estimator relies on E [Ae;;Ae;—»] = 0.
> A rejection of the test indicates that there may be serial correlation.

» You should check that the p-value for 2nd-order serial correlation is large.
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System GMM: Blundell and Bond (1998)

» Consider the model:
Yit = pYit—1 + aj + €

with p € (0,1), E[oj] = E[eir] = E[eieir] =0 and T = 3.
> There is only one orthogonality condition, E [y;;Aeiz] = 0, so p is just identified.

» Subtracting y;; from both sides of the model at t = 2 gives the first stage of this IV
regression:
Ayp=(p—1)yn +aj+ei

> Since we expect E [y;1c;] > 0, the coefficient (p — 1) will be biased upwards towards zero.

» In general, the lagged values of y; may be weak instruments for Ay;; if p is close to 1.
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System GMM: Blundell and Bond (1998)

> With p close to 1, lagged changes may be more predictive of current levels than past levels
on current changes.

» In the difference GMM approach, we use lagged levels of y;; as instruments for equations
in differences.

» The system GMM approach uses lagged differences of y;; as instruments for equations in
levels, in addition to lagged levels of y;; as instruments for equations in differences.

» Doing this assumes a stationarity restriction on the initial conditions.
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System GMM: Blundell and Bond (1998)

» The additional moment condition is E [Ay;;—1 (o +€i)] = 0.

» If T = 3, the 2 moment conditions are:
E[(yi2 — yin) (ei +¢€i3)] =0 El(eiz—€ir)yn] =0

» If T =4, the 6 moment conditions are:

E[(yi2 — yi1) (@i +€i3)] =0 E[(eis —¢ei2) yir] =0
E[(yi2 — yin) (i +€1a)] = 0 E[(cia —ei3)yn] =0
E[(yiz — yi2) (ai +€ia)] =0 E{(cia —€i3) yir] =0
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System GMM: Blundell and Bond (1998)

» Taking a closer look at E[Ayj;—1 (aj + €i)] = 0.
> Using Ayie—1 = (p — 1) yie—2 + i + €ie—1:

E[((p—1)yit—2 + i +cit—1) (ai +€it)]| = 0
» Since the ¢;; are assumed not to be serially correlated, and E [aje;;] = 0, this simplifies to:

E [((P - 1) Yie—2 + Oé,') a,-] =0

> Assuming |p| < 1, rewriting this:

» In the pure autoregressive case, «;/ (1 — p) is the steady-state value of y;;.

» The moment condition is that deviations from the steady-state must be uncorrelated with
the level of the steady state a;/ (1 — p).
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Suggested Reading

> Baltagi, chapter 8
» Croissant and Millo, chapter 7

» Roodman (2009) “How to do xtabond2: An Introduction to difference and system GMM
in Stata"
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