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Introduction

▶ In this lecture we will allow yit to also be a function of yit−1 in the linear model.

▶ We will show why we can no longer estimate the model with fixed effects (unless T → ∞).

▶ We will discuss how to estimate dynamic linear models in different ways:

▶ Anderson-Hsiao First Difference IV

▶ Arellano-Bond Difference GMM

▶ Blundell-Bond System GMM
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Model

▶ Throughout this section we will be interested in estimating (ρ,β) from:

yit = ρyit−1 + x
′
itβ + αi + εit

where
E [αi ] = E [εit ] = E [αiεit ] = 0

▶ Here yit−1 is predetermined: it is independent of the current disturbance εit but is
influenced by εit−1.

▶ Samples will have “large N and small T”.

▶ For demonstration purposes, we will often drop the covariates x it to simplify notation.
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Nickell (1981) Bias

▶ Consider the following model without covariates:

yit = ρyit−1 + αi + εit , where εit is iid over t and |ρ| < 1

▶ If we have T ≥ 3 time periods, we can apply the within transformation to remove the αi :

yit − ȳi = ρ (yit−1 − ȳi−1) + εit − ε̄i

where ȳi =
1

T−1

∑T
t=2 yit and ȳi−1 =

1
T−1

∑T−1
t=1 yit

▶ The regressor yit−1 − ȳi−1 is correlated with the error εit − ε̄i as:

▶ ε̄i contains εit−1 which is correlated with yit−1.

▶ ȳi−1 contains yit which is correlated with εit .
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Nickell (1981) Bias

▶ This correlation creates a bias that does not vanish as N → ∞ if T is fixed, so the FE
estimator is inconsistent.

▶ This bias as N → ∞ is approximately − (1 + ρ) / (T − 2) for reasonably large values of T .

▶ If T → ∞, the bias goes to zero.

▶ For T = 3, the bias is exactly − 1
2
(1 + ρ).

▶ If we can calculate the bias analytically, why not just correct the estimate ex-post?

▶ Kiviet (1995) shows how to do this, but it does not work for unbalanced panels, nor for the
possibility of other endogenous regressors.

▶ We will study different methods that do not require a correction.
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Demonstrating Nickell Bias with Simulations
If we generate 500 datasets with sample size N = 1000 and various T according to the model:

yit = ρyit−1 + αi + εit

with εit ∼ N (0, 1), αi ∼ N (0, 1) and ρ = 0.5, and estimate ρ via fixed effects we get the
following densities for the estimated ρs:

0

25

50

75

−0.2 0.0 0.2 0.4
Estimated rho

D
en

si
ty

T:

3

4

5

10

50

6 / 23



First Differencing: Anderson and Hsiao (1982)

▶ If we take first differences of the model yit = ρyit−1 + αi + εit , we get:

yit − yit−1 = ρ (yit−1 − yit−2) + εit − εit−1 for t = 3, . . . ,T

▶ yit−1 − yit−2 will still be correlated with εit − εit−1, and OLS estimates of ρ will be biased.

▶ yit−2, however, is correlated with yit−1 − yit−2, but not correlated with εit − εit−1.

▶ Therefore, according to the model, yit−2 is a valid instrument for ∆yit−1.

▶ yit−2 − yit−3 would also be a valid instrument, but you would lose a time period for every
individual.
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First Differencing: Anderson and Hsiao (1982)

▶ The (T − 2)× 1 instrument matrix would then be:

Z i = (yi1, yi2, . . . , yiT−2)
′

▶ For example, for T = 4, for each i , the moments are:

E
[
Z ′

i∆εi
]
= E

[(
yi1
yi2

)′(
εi3 − εi2
εi4 − εi3

)]
= 0

▶ If we were concerned that εit was serially correlated, you could use further lags instead as
instruments. However, this would result in more dropped time periods.
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Arellano and Bond (1991)

▶ While the Andserson-Hsiao estimator is consistent, it is not efficient, as it does not take
into account of all available moment conditions.

▶ For the same reason that yit−2 is a valid instrument for ∆yit−1, yit−3 is also a valid
instrument.

▶ We can continue adding instruments this way, so yi1, yi2, . . . , yit−2 are all valid instruments
for ∆yit−1

▶ But, adding further lags in the Anderson-Hsiao approach would result in more dropped
time periods.

▶ For example, if T = 4 and we use the 2nd and 3rd lag as instruments, we only have a
complete set of instruments for t = 4:

Z i =

(
yi1 .
yi2 yi1

)

9 / 23



Holtz-Eakin et al. (1988)

▶ Holtz-Eakin et al. (1988) replaced the “dots” with zeros in the instrument matrix as each
column would still be orthogonal to the first-differenced errors, assuming E [yit−2∆εit ] = 0.

▶ Constructing the instrument matrix this way in the T = 4 case means we can use the
t = 3 observations as well:

E
[
Z ′

i∆εi
]
= E

[(
yi1 yi2
0 yi1

)(
∆εi3
∆εi4

)]
= E

[(
yi1∆εi3 + yi2∆εi4

0 + yi1∆εi4

)]
=

(
0
0

)
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Arellano-Bond Instrument Matrix

▶ Arellano-Bond construct a slightly different instrument matrix which adds additional
moments:

Z ′
i∆εi =

yi1 0
0 yi1
0 yi2

(∆εi3
∆εi4

)
=

yi1∆εi3
yi1∆εi4
yi2∆εi4


▶ For T = 6, the instrument matrix would be:

Z i =


yi1 0 0 0 0 0 0 0 0 0
0 yi1 yi2 0 0 0 0 0 0 0
0 0 0 yi1 yi2 yi3 0 0 0 0
0 0 0 0 0 0 yi1 yi2 yi3 yi4
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GMM Estimation With One-Step Weight Matrix

▶ ρ is estimated by minimizing the GMM objective using an initial weight matrix W 1:

ρ̂1 = argmin
ρ

(
1

N

N∑
i=1

mi (ρ)

)′

W−1
1

(
1

N

N∑
i=1

mi (ρ)

)

where:

mi (ρ) = Z ′
i∆εi (ρ) = Z ′

i

(
∆y i − ρ∆y i−1

)
= Z ′

i

 ∆yi3 − ρ∆yi2
...

∆yiT − ρ∆yiT−1
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One-Step Weight Matrix

Software packages often use the following one-step weight matrix:

W 1 =
1

N

N∑
i=1

Z ′
iHZ i

where H is D ′D, and where D is the (T − 2)× (T − 1) first difference operator:

D =


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1

 H =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
0 0 −1 2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 2
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GMM Estimation With Two-Step Weight Matrix

▶ The second-step weight matrix is formed using the residuals from the first step estimate ρ̂1:

Ŵ 2 =
1

N

N∑
i=1

Z ′
i [∆εi (ρ̂1)] [∆εi (ρ̂1)]

′
Z i

▶ Using this weight matrix in the same objective gives the two-step estimate ρ̂2:

ρ̂2 = argmin
ρ

(
1

N

N∑
i=1

mi (ρ)

)′

Ŵ
−1

2

(
1

N

N∑
i=1

mi (ρ)

)
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Closed-Form Solution
▶ We can actually solve for ρ̂k , k = 1, 2 by taking first-order conditions of the GMM

objective function with respect to ρ.

▶ The objective function is:

Qk (ρ) =

[
1

N

N∑
i=1

Z ′
i

(
∆y i − ρ∆y i,−1

)]′
W−1

k

[
1

N

N∑
i=1

Z ′
i

(
∆y i − ρ∆y i,−1

)]

▶ The first-order condition is:

∂Q (ρ)

∂ρ
= −2

[
1

N

N∑
i=1

Z ′
i∆y i,−1

]′
W−1

k

[
1

N

N∑
i=1

Z ′
i

(
∆y i − ρ∆y i,−1

)]
= 0

▶ Solving for ρ yields the k-th step estimator for ρ:

ρ̂k =

(∑N
i=1 Z

′
i∆y i,−1

)′
W−1

k

(∑N
i=1 Z

′
i∆y i

)
(∑N

i=1 Z
′
i∆y i,−1

)′
W−1

k

(∑N
i=1 Z

′
i∆y i,−1

)
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Sargan/Hansen Test for Over-Identification Restrictions

▶ In the model ∆yit = ρ∆yit−1 +∆εit , with T = 4 we have 3 moments to identify one
parameter.

▶ In general, there will be more moments than unknown parameters.

▶ When the model is overidentified,
∑N

i=1 Z
′
i∆ε̂i ̸= 0.

▶ The Sargan Test Statistic is:

J =

[
N∑
i=1

Z ′
i∆ε̂i

]′
W−1

2

[
N∑
i=1

Z ′
i∆ε̂i

]
∼ χ2

p−K−1

where p is the number of instruments and K is the number of variables in x it (zero in this
example).

▶ A low p-value indicates that the instruments may not be valid.
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Test for Autocorrelation

▶ Arellano and Bond (1991) also propose a test for second-order serial correlation for the
disturbances in the first-differenced equation.

▶ This is important, because consistency of the GMM estimator relies on E [∆εit∆εit−2] = 0.

▶ A rejection of the test indicates that there may be serial correlation.

▶ You should check that the p-value for 2nd-order serial correlation is large.

17 / 23



System GMM: Blundell and Bond (1998)

▶ Consider the model:
yit = ρyit−1 + αi + εit

with ρ ∈ (0, 1), E [αi ] = E [εit ] = E [αiεit ] = 0 and T = 3.

▶ There is only one orthogonality condition, E [yi1∆εi3] = 0, so ρ is just identified.

▶ Subtracting yi1 from both sides of the model at t = 2 gives the first stage of this IV
regression:

∆yi2 = (ρ− 1) yi1 + αi + εit

▶ Since we expect E [yi1αi ] > 0, the coefficient (ρ− 1) will be biased upwards towards zero.

▶ In general, the lagged values of yit may be weak instruments for ∆yit if ρ is close to 1.
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System GMM: Blundell and Bond (1998)

▶ With ρ close to 1, lagged changes may be more predictive of current levels than past levels
on current changes.

▶ In the difference GMM approach, we use lagged levels of yit as instruments for equations
in differences.

▶ The system GMM approach uses lagged differences of yit as instruments for equations in
levels, in addition to lagged levels of yit as instruments for equations in differences.

▶ Doing this assumes a stationarity restriction on the initial conditions.
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System GMM: Blundell and Bond (1998)

▶ The additional moment condition is E [∆yit−1 (αi + εit)] = 0.

▶ If T = 3, the 2 moment conditions are:

E [(yi2 − yi1) (αi + εi3)] = 0 E [(εi3 − εi2) yi1] = 0

▶ If T = 4, the 6 moment conditions are:

E [(yi2 − yi1) (αi + εi3)] = 0 E [(εi3 − εi2) yi1] = 0

E [(yi2 − yi1) (αi + εi4)] = 0 E [(εi4 − εi3) yi1] = 0

E [(yi3 − yi2) (αi + εi4)] = 0 E [(εi4 − εi3) yi2] = 0

20 / 23



System GMM: Blundell and Bond (1998)
▶ Taking a closer look at E [∆yit−1 (αi + εit)] = 0.

▶ Using ∆yit−1 = (ρ− 1) yit−2 + αi + εit−1:

E [((ρ− 1) yit−2 + αi + εit−1) (αi + εit)] = 0

▶ Since the εit are assumed not to be serially correlated, and E [αiεit ] = 0, this simplifies to:

E [((ρ− 1) yit−2 + αi )αi ] = 0

▶ Assuming |ρ| < 1, rewriting this:

E
[(

yit−2 −
αi

1− ρ

)
αi

]
= 0

▶ In the pure autoregressive case, αi/ (1− ρ) is the steady-state value of yit .

▶ The moment condition is that deviations from the steady-state must be uncorrelated with
the level of the steady state αi/ (1− ρ).
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Suggested Reading

▶ Baltagi, chapter 8

▶ Croissant and Millo, chapter 7

▶ Roodman (2009)“How to do xtabond2: An Introduction to difference and system GMM
in Stata”
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