
Static Linear Panel Data

Example Questions and Solutions

230347: Advanced Microeconometrics

Question 1

One-Way Error Within Transformation in Matrix Notation

The one-way error component model yit = α+ x′
itβ + αi + εit can also be written in matrix form as:

y
(NT×1)

= X
(NT×K)

β
(K×1)

+ (IN ⊗ ιT )
(NT×N)

α
(N×1)

+ ε
(N×T )

(1)

where:

� y is stacked such that (y11, . . . , y1T , y21, . . . , yN1, . . . , yNT ).

� X includes a column of ones as its first column.

� Ik is an k × k identity matrix

� ιk is an k vector of ones.

� ⊗ is the Kronecker product.

Define the following:

� Zα = (IN ⊗ ιT ).

� P = Zα

(
Z ′

αZα

)−1
Z ′

α. The matrix P gets the individual means over time.

� Q = INT − P .

Show that by premultiplying the model in (1) by Q removes the individual effects and that the within

estimator for β is
(
X ′QX

)−1
X ′Qy.
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Solution

We see that premultiplying the model removes the individual effects:

y = Xβ + (IN ⊗ ιT )α+ ε

y = Xβ +Zαα+ ε

Qy = QXβ +QZαα+Qε

Qy = QXβ + INTZαα−Zα

(
Z ′

αZα

)−1
Z ′

αZαα+Qε

Qy = QXβ +Zαα−Zαα+Qε

Qy = QXβ +Qε

The OLS estimator for β is then:

β̂ =
(
(QX)

′
(Q)X

)−1
(QX)

′
Qy

=
(
X ′Q′QX

)−1
X ′Q′Qy

To simplify this, we show that Q′Q = Q, noting that P is symmetric:

Q′Q = (INT − P )
′
(INT − P )

= INT − P ′ − P + P ′P

= INT − 2P +Zα

(
Z ′

αZα

)−1
Z ′

αZα

(
Z ′

αZα

)−1
Z ′

α

= INT − 2P + P

= INT − P

= Q

Therefore the estimator for β can be written as
(
X ′QX

)−1
X ′Qy.

Question 2

Within Transformation and First Differences for T = 2

For the model:

yit = x′
itβ + αi + εit i = 1, . . . , N t = 1, 2

Show that for T = 2 the within transformation and first differences produce estimates that are numerically

identical, i.e. β̂FE = β̂FD
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Solution

(i) The within estimator is:

β̂FE =

[
N∑
i=1

2∑
t=1

(xit − x̄i) (xit − x̄i)
′

]−1 [ N∑
i=1

2∑
t=1

(xit − x̄i) (yit − ȳi)

]

=

[
N∑
i=1

(xi1 − x̄i) (xi1 − x̄i)
′
+ (xi2 − x̄i) (xi2 − x̄i)

′

]−1 [ N∑
i=1

(xi1 − x̄i) (yi1 − ȳi) + (xi2 − x̄i) (yi2 − ȳi)

]

However:

xi1 − x̄i = xi1 −
xi1 + xi2

2
=

xi1 − xi2

2
= −xi2 − xi1

2
= −∆xi2

2

xi2 − x̄i = xi2 −
xi1 + xi2

2
=

xi2 − xi1

2
=

∆xi2

2

And similarly for yit − ȳi. Using this:

β̂FE =

[
N∑
i=1

(
−∆xi2

2

)(
−∆xi2

2

)′

+

(
∆xi2

2

)(
∆xi2

2

)′
]−1 [ N∑

i=1

(
−∆xi2

2

)(
−∆yi2

2

)′

+

(
∆xi2

2

)(
∆yi2
2

)′
]

=

[
N∑
i=1

1

4
(∆xi2) (∆xi2)

′
+

1

4
(∆xi2) (∆xi2)

′

]−1 [ N∑
i=1

1

4
(∆xi2) (∆yi2)

′
+

1

4
(∆xi2) (∆yi2)

′

]

=

[
N∑
i=1

(∆xi2) (∆xi2)
′

]−1 [ N∑
i=1

(∆xi2) (∆yi2)
′

]
= β̂FD

Question 3

GLS Estimation of First Differences is Equivalent to Fixed Effects

Consider the standard static linear panel data model with individual effects:

yit = x′
itβ + αi + εit i = 1, . . . , N t = 1, . . . , T

where εit is iid with variance σ2.

Let yi = (yi1, . . . , yiT )
′
and similarly for ui and xi (now T ×K). Let ιT be a T × 1 vector of ones. The

model can now be written as:

yi = xiβ + αiιT + εi

Define the (T − 1)× T matrix:

D =



1 −1 0 0 · · · 0 0

0 1 −1 0 · · · 0 0

0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1


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Premultiplying the model by this matrix gives:

Dyi = Dxiβ + αiDιT +Dεi

Dyi = Dxiβ +Dεi

Each row of the above is now:

∆yit = ∆x′
itβ +∆εit

The matrix D transforms the model from levels to first differences. If we estimate the transformed model

with OLS, we get:

β̂FD =

(
N∑
i=1

(Dxi)
′
(Dxi)

)−1( N∑
i=1

(Dxi)
′
(Dyi)

)

=

(
N∑
i=1

x′
iD

′Dxi

)−1( N∑
i=1

x′
iD

′Dyi

)

The error εit is iid with variance σ2 in the model in levels. However, taking first differences actually induces

serial correlation, as ∆εit = εit − εit−1 is correlated with ∆εit−1 = εit−1 − εit−2 as both contain εit−1. Now

Var (∆εit) = 2σ2 and Cov (∆εit,∆εit−1) = −σ2. In matrix notation:

Var (Dεi) = σ2DD′ ≡ σ2Ω

where

Ω
(T−1)×(T−1)

=



2 −1 0 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0

0 0 −1 2 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 2


Given this, the OLS estimator β̂FD is not efficient (although it is still consistent). To obtain an efficient

estimator, we could estimate the model with GLS. What is interesting here that we know Ω exactly as it

just zeros, (negative) ones and twos, so we don’t have to do FGLS.

Question: Show that the GLS estimator of this model is the same as the within estimator.

Solution

To estimate the model via GLS, we premultiply the first-differenced model by Ω− 1
2 :

Ω− 1
2Dyi = Ω− 1

2Dxiβ +Ω− 1
2αiDιT +Ω− 1

2Dεi

= Ω− 1
2Dxiβ +Ω− 1

2Dεi
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The GLS estimator of the first differenced model is then:

β̂FD,GLS =

(
N∑
i=1

x′
iD

′Ω−1Dxi

)−1( N∑
i=1

x′
iD

′Ω−1Dyi

)

=

(
N∑
i=1

x′
iD

′ (DD′)−1
Dxi

)−1( N∑
i=1

x′
iD

′ (DD′)−1
Dyi

)

We now write the fixed effects estimator in the same notation. The mean of the T × 1 vector yi can be

found by 1
T ι

′
TyT . To repeat the mean T times in a T × 1 vector, we can write 1

T ιT ι
′
TyT . Note that ιT ι

′
T is

a T × T matrix of ones. The demeaning of yi in the fixed effects approach can therefore be done in matrix

notation with: (
IT − 1

T
ιT ι

′
T

)
yi

Define the demeaning matrix as Q = D′ (DD′)−1
D =

(
IT − 1

T ιT ι
′
T

)
. Premultiplying the model by Q

demeans each variable:

Qyi = Qxiβ +QαiιT +Qεi

Qyi = Qxiβ +

(
IT − 1

T
ιT ι

′
T

)
αiιT +Qεi

Qyi = Qxiβ + αiιT + αi
1

T
ιT ι′T ιT︸ ︷︷ ︸

=T

+Qεi

Qyi = Qxiβ +Qεi

We can then estimate the demeaned model with OLS:

β̂FE =

(
N∑
i=1

x′
iQ

′Qxi

)−1( N∑
i=1

x′
iQ

′Qyi

)

Q is symmetric:

Q′ =
[
D′ (DD′)−1

D
]′

= D′ (DD′)−1
D = Q

and idempotent:

QQ = D′ (DD′)−1
DD′ (DD′)−1

D = D′ (DD′)−1
D = Q

so Q′Q = Q. Therefore:

β̂FE =

(
n∑

i=1

x′
iQxi

)−1( n∑
i=1

x′
iQyi

)
But this is exactly the same as the GLS estimator of the first differences model.

Question 4

Staggered Difference-in-Differences

Different regions in a country are rolling out a new policy in a staggered way, with some regions rolling out

the policy earlier than others. You are interested in estimating the effect of this policy on an outcome Yst
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in the model:

Yst = αs + λt + βDst + εst

where s indexes the region, t indexes time, αs are region fixed effects, λt are time period fixed effects, and

Dst is a treatment status indicator. Here, Dst = 1 if region s rolled out a policy in or before time t and zero

otherwise. Thus, if region s is treated at time t, it remains treated in all future time periods. It holds that:

� If Dst = 1, then Dst′ = 1 for all t′ ≥ t

� If Dst = 0, then Dst′ = 0 for all t′ ≤ t

You have a balanced panel of S regions and T time periods.

Define Yst (1) as the potential outcome for region s in time t if it is treated and Yst (0) if it is not treated.

Assume the following:

1. Observations are mutually independent across regions.

2. The potential outcomes without treatment are mean independent of the treatment sequence:

E [Yst (0)− Yst−1 (0) |Ds1, . . . , DsT ] = E [Yst (0)− Yst−1 (0)] for all g and t ≥ 2

3. Common trends in the absence of treatment: For t ≥ 2, E [Yst (0)− Yst−1 (0)] does not vary across s.

Note: It is possible to answer each part in without having solved the previous part(s). Therefore if you

cannot solve a part, move on to the next one.

(i) Show that the two-way fixed effects estimator for β can be written in the form:

β̂ =

∑S
s=1

∑T
t=1 D̃stYst∑S

s=1

∑T
t=1 D̃stDst

where:

D̃st = Dst −
1

T

T∑
t=1

Dst −
1

S

S∑
s=1

Dst +
1

ST

S∑
s=1

T∑
t=1

Dst

Hint: First use the Frisch-Waugh-Lovell (FWL) theorem and then show that the residuals from re-

gressing the treatment status indicator on region and time period fixed effects are equal to D̃st (by

taking first-order conditions of the ordinary least squares minimization problem associated with that

regression).

(ii) Let D = (D11, D12, . . . , DST ). Using:

E [Yst|D] =E [Yst (0) |D] +DstE [Yst (1)− Yst (0) |D]

=E [Yst (0) |D] +DstE [∆st|D]

and assumptions 2 & 3 above, show that:

E [Yst|D]− E [Yst′ |D]− (E [Ys′t|D]− E [Ys′t′ |D]) =

DstE [∆st|D]−Dst′E [∆st′ |D]− (Ds′tE [∆s′t|D]−Ds′t′E [∆s′t′ |D])

where E [∆st|D] is the average treatment effect on the treated for region s at time t.
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(iii) Show that:
T∑

t=1

D̃st = 0

By a similar approach it is possible to show that
∑S

s=1 D̃st = 0, which you may use later without proof.

(iv) Using parts (i)-(iii) and the assumptions above, show that in expectation the fixed effects estimator is

the following weighted average of individual treatment effects:

E
[
β̂
∣∣∣D] = ∑

(s,t):Dst=1 D̃stE [∆st|D]∑
(s′,t′):Ds′t′=1 D̃s′t′

Hint: Use the result from part (iii) that:

S∑
s=1

T∑
t=1

D̃stE [Yst|D] =

S∑
s=1

T∑
t=1

D̃st (E [Yst|D]− E [Yst′ |D]− E [Ys′t|D] + E [Ys′t′ |D])

because the 2nd, 3rd and 4th terms equal zero when multiplied by D̃st and summed over s and t.

(v) [5 Points] In 1998, Israel extended the right to counsel to suspects in arrest proceedings, as well

as providing public defenders in arrest proceedings. They rolled out this policy change across all six

regions in the country in a staggered way:

� November 1998: Tel Aviv Region and Central Region.

� January 1999: Jerusalem Region and Southern Region.

� December 2000: Northern Region.

� November 2002: Haifa Region.

A 2017 article in the Americal Economic Journal: Economic Policy studies the effect of this reform on

crime. They use weekly data at the region level and regression 1 in Table 4 estimates the model:

log (Number of arrestsst) = β (Counsel)st + αs + λt + εst

The dependent variable is the number of arrests in region s in week t. The variable “Counsel” is an

indicator if region s had implemented the reform by week t. They estimate the model using weekly

data at the region level from 1996-2003 using the two-way fixed effects estimator. Their results are

shown below:
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From this we could make the interpretation that police are more hesitant to make arrests when they

know they will face a public defender in court. So they make fewer arrests. Note that 8 years × 52

weeks × 6 regions gives 2,496 observations, so they have a balanced panel.

If we instead use the Callaway and Sant’Anna (2020) approach to estimate the effect of the treatment,

we obtain an estimate of 0.0051 (different sign) with standard error 0.0621 for the equivalent regression

in column (1). Furthermore, we can also calculate that 23.2% of the D̃st terms are negative when

Dst = 1.

Using the result from part (iv), discuss possible reasons why the results from using the Callaway and

Sant’Anna (2020) approach would differ so much from the two-way fixed effects estimator. Come up

with a plausible explanation using the distribution of treatment timing and the sample period.

Solution

(i) By the Frisch-Waugh-Lovell theorem, if we regress the treatment status indicator Dst on the region

and time fixed effects and get the residuals ust, then we can regress Yst on these residuals to obtain

the OLS estimator for β:

β̂ =

∑S
s=1

∑T
t=1 ustYst∑S

s=1

∑T
t=1 ustDst

We just need to show that ust = D̃st.

Consider this first-stage regression:

Dst = αs + λt + ust

where instead of forcing λ1 = 0 we impose the constraint that
∑T

t=1 λt = 0. Ordinary least squares

solves the following problem:

min
{α1,...,αS ,λ1,...,λT }

S∑
s=1

T∑
t=1

(Dst − αs − λt)
2
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The first-order condition with respect to αs is:

−2

T∑
t=1

(Dst − αs − λt) = 0

Solving for αs gives:

αs =
1

T

T∑
t=1

(Dst − λt) =
1

T

T∑
t=1

Dst

as
∑T

t=1 λt = 0. The first-order condition with respect to λt is:

−2

S∑
s=1

(Dst − αs − λt) = 0

Solving for λt gives

λt =
1

S

S∑
s=1

Dst −
1

S

S∑
s=1

αs =
1

S

S∑
s=1

Dst −
1

S

S∑
s=1

1

T

T∑
t=1

Dst

So the residuals from this regression can be written as:

ust = Dst − αs − λt

ust = Dst −
1

T

T∑
t=1

Dst −
1

S

S∑
s=1

Dst +
1

ST

S∑
s=1

T∑
t=1

Dst

(ii) Clearly we just need to show that:

E [Yst (0) |D]− E [Yst′ (0) |D]− (E [Ys′t (0) |D]− E [Ys′t′ (0) |D]) = 0

Using assumption 2, this is:

E [Yst (0)]− E [Yst′ (0)]− (E [Ys′t (0)]− E [Ys′t′ (0)])

And using assumption 3 of common trends, we know that

E [Yst (0)]− E [Yst′ (0)] = E [Ys′t (0)]− E [Ys′t′ (0)]

Thus we have shown that the expression is zero.

(iii)

T∑
t=1

D̃st =

T∑
t=1

Dst −
T∑

t=1

1

T

T∑
t=1

Dst −
T∑

t=1

1

S

S∑
s=1

Dst +

T∑
t=1

1

ST

S∑
s=1

T∑
t=1

Dst

=−
T∑

t=1

1

S

S∑
s=1

Dst +
1

S

S∑
s=1

T∑
t=1

Dst

=0
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(iv) First note from part (i) that:

E
[
β̂
∣∣∣D] = E

[ ∑S
s=1

∑T
t=1 D̃stYst∑S

s=1

∑T
t=1 D̃stDst

∣∣∣∣∣D
]
=

∑S
s=1

∑T
t=1 D̃stE [Yst|D]∑S

s=1

∑T
t=1 D̃stDst

The denominator follows from part (i):

S∑
s=1

T∑
t=1

D̃stDst =
∑

(s′,t′):Ds′t′=1

D̃s′t′

So we only need to show in the numerator that:

S∑
s=1

T∑
t=1

D̃stE [Yst|D] =

S∑
s=1

T∑
t=1

D̃stDstE [∆st|D] =

Using part (iii), we can write:

S∑
s=1

T∑
t=1

D̃stE [Yst|D] =

S∑
s=1

T∑
t=1

D̃st (E [Yst|D]− E [Yst′ |D]− E [Ys′t|D] + E [Ys′t′ |D])

That is, parts 2-4 on the RHS equal zero so we can add and subtract the terms as we please. Using

part (ii)

S∑
s=1

T∑
t=1

D̃stE [Yst|D]

=

S∑
s=1

T∑
t=1

D̃st (DstE [∆st|D]−Dst′E [∆st′ |D]− (Ds′tE [∆s′t|D]−Ds′t′E [∆s′t′ |D]))

Removing the parts that we know equal zero (for the same reason as the 2nd-last step):

S∑
s=1

T∑
t=1

D̃stE [Yst|D]

=
S∑

s=1

T∑
t=1

D̃stDstE [∆st|D]

=
∑

(s,t):Dst=1

D̃stE [∆st|D]

And we are done.

(v) We saw in part (iv) that the two-way fixed effects estimator of β is a weighted average of the individual

treatment effects. These weights are proportional to D̃st, which are more likely to be negative when:

� The region is an early adopter. Here the earliest adopter have almost 3 years of pre-treatment

data, so this problem is less likely of a concern.

� The time period is toward the end of the sample period. This is more of a concern here because all

regions are eventually treated, and 5 of the 6 are treated around the middle of the sample period.
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So negative weights are likely towards the end of the sample.

If the instantaneous effect of the policy is close to zero, but eventually (after several years), the

policy starts to have a positive effect on the number of arrests (perhaps because the policy leads

to more crime), then negative weights on early adopters in the later years (which are the most

likely to have negative weights) could lead the two-way fixed effects estimator to be negative.

Question 5

Application of Changes-in-Changes

Havnes and Mogstad (2015)1 use a reform which introduced universal subsidized childcare for 3- to 6-year

olds in Norway to study the effect of childcare on future earnings as an adult.

The reform occurred during 1976-1979. The post-reform cohort (those affected by the reform) is those

born during 1973-1976 and the pre-reform cohort (those unaffected by the reform) is those born during 1967-

1969. They order municipalities by how much they grew (in percentage points) in childcare coverage between

1976 and 1979. They split municipalities at the median and the treated municipalities are the municipalities

that experienced an above-the-median growth in childcare coverage, and the control municipalities are the

municipalities that experienced a below-the-median growth in childcare coverage.

The empirical strategy is then to compare later adult outcomes (such as earnings) of the children from

treated and control municipalities before and after the reform in a differences-in-differences setup.

(i) What concerns could you have about this empirical strategy?

(ii) The changes-in-changes estimate at each quantile in the earnings distribution is shown below. The grey

band is a 90% confidence interval from 500 bootstrap replications. The earnings variable is defined as

the individual’s average earnings over the period 2006-2009 measured in Norwegian Kroner. Explain

and interpret what the graph tells us.

(iii) Havenes and Mogstad (2015) also find that the policy had a positive effect on the child’s future earnings

when they had low-income parents and had a negative effect when they had middle- to high-income

parents. What are the policy implications of this?
1Havnes, Tarjei, and Magne Mogstad “Is universal child care leveling the playing field?.” Journal of Public Economics 127

(2015): 100-114.
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Example Solution

(i) One problem would be if there is a trend in an unobserved factor that affected both childcare coverage

and later earnings. An example of this would be a trend in parents’ educational attainment. This would

increase the demand for childcare (as it’s more likely both will be working) but could also have impacts

on children’s later earnings (as parents’ education may affect the children’s educational outcomes).

There are also concerns about selection into the treatment group: the municipalities that saw larger

increases in childcare coverage may have been the ones that would benefit the most from increasing

coverage.

(ii) The policy had a positive effect for children in the low and middle parts of the income distribution. For

the upper part of the distribution, the effect is negative, although not statistically significant. Also,

since the incomes at the lower end of the distribution increased and did not increase at the upper end,

it had a small effect of reducing income inequality.

(iii) Given this, providing childcare to upper-class families may not be worth the cost. Therefore a means-

tested subsidy for childcare may be more cost-effective.
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