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Introduction

In this section we will discuss three topics:
▶ Existence: Under which assumptions we can be guaranteed that an equilibrium

will exist?
▶ We will do two proofs, where one deals with the complication of strongly monotonic

preferences with zero prices.

▶ Uniqueness: Under which conditions can we be guaranteed that an equilibrium
will be unique?

▶ Stability: Under which conditions is an equilibrium stable?
▶ If the economy is pushed away from equilibrium (e.g. from a shock), will it adjust

back?
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Equilibrium in Pure Exchange Economies

▶ A pure exchange economy is a special case of the general case with J = 1 and
Y1 = −RL

+ (free disposal).
▶ If 𝝎̄ ≫ 0 and each consumer i has continuous, strictly convex and locally

nonsatiated preferences, the equilibrium definition can be restated as:

Definition(
x★, y★1

)
and p ∈ RL constitute a Walrasian equilibrium in a pure exchange economy iff:

(i) y★1 ≤ 0, p · y★1 = 0 and p ≥ 0 (profit maximization).

(ii) x★i = xi (p, p · 𝝎 i) for all i (utility maximization).

(iii)
∑I

i=1 x
★
i =

∑I
i=1 𝝎 i + y★1 (market clearing).
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Excess Demand

▶ The excess demand function of consumer i is:

zi (p) = xi (p, p · 𝝎 i) − 𝝎 i

▶ The aggregate excess demand function of the economy is:

z (p) =
I∑︁

i=1

zi (p)

▶ In a pure exchange economy in which preferences are continuous, strictly convex
and locally nonsatiated, p ≥ 0 is a Walrasian equilibrium price vector iff z (p) ≤ 0.
▶ y★1 = z (p) is profit-maximizing, because p · z (p) = 0.

▶ p · zi (p) = 0 ∀i by Walras’ law (LNS), so
∑I
i=1 p · zi (p) = 0.
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Proof of Existence

Proposition

Suppose that z (p) is a function defined for all nonzero, nonnegative price vectors
p ∈ RL

+ and satisfies continuity, homogeneity of degree zero and Walras’ law. Then there
is a price vector p★ such that z

(
p★

)
≤ 0.

▶ Because of homogeneity of degree zero, we can normalize prices to the unit simplex:

Δ =

{
p ∈ RL

+ :
L∑︁
ℓ=1

pℓ = 1

}
▶ Δ is compact (closed and bounded) and convex.
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Unit Simplex with L = 2

With L = 2, the unit simplex is given by the line p2 = 1 − p1, for p1 ∈ [0, 1].

p1

1

p2

1
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Proof of Existence
▶ Define the function f : Δ → Δ:

{fℓ (p)}Lℓ=1 =

{
pℓ +max {zℓ (p) , 0}

1 + ∑L
k=1 max {zk (p) , 0}

}L

ℓ=1

▶ Because zℓ (p) is continuous ∀ℓ and the denominator is bounded away from zero, f
is continuous. See notes on Canvas for a formal 𝜀-𝛿 proof of continuity.

▶ f is a continuous function mapping a compact convex set to itself: Brouwer can be
applied.

▶ By Brouwer’s fixed-point theorem, ∃p★ ∈ Δ s.t. p★ = f
(
p★

)
.

0 = p★ · z
(
p★

)︸            ︷︷            ︸
Walras’ law

= f
(
p★

)
· z

(
p★

)
=

∑L
ℓ=1

(
pℓ +max

{
zℓ

(
p★

)
, 0

})
zℓ

(
p★

)
1 + ∑L

k=1 max {zk (p★) , 0}

▶ Therefore
∑L

ℓ=1 max
{
zℓ

(
p★

)
, 0

}
zℓ

(
p★

)
= 0, so z

(
p★

)
≤ 0.
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Strongly Monotone Preferences

▶ The previous proof works when demand is continuous over all nonzero,
nonnegative prices.

▶ However, if preferences are strongly monotone, demand is infinite at zero prices
▶ This occurs at the boundary of the simplex.

▶ We will now adapt the proof to handle this case.
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Properties of the Aggregate Excess Demand Function

Suppose that, for every consumer i, Xi = RL
+ and ⪰i is continuous, strictly convex, and

strongly monotone. Suppose also that 𝝎̄ ≫ 0. Then the aggregate excess demand
function, defined for all price vectors p ≫ 0 satisfies:

(i) z (·) is continuous

(ii) z (·) is homogenous of degree zero.

(iii) p · z (p) = 0 for all p (Walras’ law)

(iv) There is an s > 0 such that zℓ (p) > −s for every commodity ℓ and all p.
(v) If pn is a sequence of price vectors converging to p ≠ 0 and pℓ = 0 for some ℓ , then

zℓ (pn) → ∞.
▶ There is at least one consumer with positive wealth at the limit who demands an

infinite amount of the free good.
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Existence of Equilibria With Strongly Monotone Preferences

In a pure exchange economy in which consumer preferences are continuous, strictly
convex, and strongly monotone, p ≫ 0 is a Walrasian equilibrium price vector if and
only if:

z (p) = 0

Proposition

Suppose that z (p) is a function defined for all p ∈ RL
++ satisfying conditions (i)-(v) on

the previous slide. Then the system of equations z (p) = 0 has a solution. Hence, a
Walrasian equilibrium exists in any pure exchange economy in which 𝝎̄ ≫ 0 and every
consumer has continuous, strictly convex and strongly monotone preferences.
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Unit Simplex

We define a variation on the unit simplex from the last proof.
For a fixed 𝜀 ∈ (0, 1):

Δ𝜀 =

{
p :

L∑︁
ℓ=1

pℓ = 1 and pℓ ≥
𝜀

1 + 2L
∀ℓ

}
▶ Δ𝜀 is compact (closed and bounded).
▶ Δ𝜀 is convex.
▶ Δ𝜀 non-empty:

▶ pℓ = 1
L , ∀ℓ is an element for any 𝜀 ∈ (0, 1), because

∑L
ℓ=1 pℓ = 1 and 1+2L

L > 𝜀 for
𝜀 ∈ (0, 1).

▶ Later we will let 𝜀 → 0.
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Δ𝜀 with L = 2

Δ𝜀 =

{
p :

L∑︁
ℓ=1

pℓ = 1 and pℓ ≥
𝜀

1 + 2L
∀ℓ

}

p1

1
1 − 𝜀

5

p2

11 − 𝜀
5
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Fixed Point Function

Define for each p ∈ Δ𝜀 a function f (p) = {fℓ (p)}Lℓ=1 where:

fℓ (p) =
pℓ + 𝜀 +max {0,min {zℓ (p) , 1}}

1 + L𝜀 + ∑L
k=1 max {0,min {zk (p) , 1}}

▶
∑L

ℓ=1 fℓ (p) = 1 and fℓ (p) ≥ 𝜀
1+2L ∀ℓ

▶ ⇒ f (p) ∈ Δ𝜀 for any p ∈ Δ𝜀 . The function maps Δ𝜀 onto itself.

▶ Each fℓ is also continuous, by the continuity of each zℓ and the denominator being
bounded away from 0.

▶ f (p) is a continuous function mapping a compact, convex, non-empty set onto
itself, so ∃p★ s.t. f

(
p★

)
= p★.
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Letting 𝜺 → 0

▶ Now let 𝜀 → 0 and consider the associated sequence of fixed point price vectors
pn → p.

▶ The sequence pn ∈ RL is bounded because pn ∈ Δ𝜀 ∀n.
▶ Every bounded sequence in Rn has a convergent subsequence (Bolzano-Weierstrass

theorem).
▶ Call the converged vector p★.
▶ Because p★ is in the simplex, p★ ≥ 0 and p ≠ 0. We need to show that in fact

p★ ≫ 0.
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Proving that p★ ≫ 0
Because f (pn) = pn, every price vector in the sequence satisfies (∀ℓ):

pnℓ

[
1 + L𝜀 +

L∑︁
k=1

max {0,min {zk (pn) , 1}}
]
= pnℓ + 𝜀 +max {0,min {zℓ (pn) , 1}}

▶ Suppose p★k = 0 for some good k. Then, as pnk → 0:

pnk︸︷︷︸
→0

[
L𝜀 +

L∑︁
m=1

max {0,min {zm (pn) , 1}}
]

︸                                          ︷︷                                          ︸
Positive, by property (v) and bounded due to the min

=

𝜀︸︷︷︸
→0

+max {0,min {zk (pn) , 1}}︸                           ︷︷                           ︸
=1, by property (v)

▶ LHS→ 0 but RHS→ 1. Therefore it must be that p★ ≫ 0.
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Last Step: Show that f
(
p★

)
= p★ is an Equilibrium

▶ We now show that f
(
p★

)
= p★ is an equilibrium (z

(
p★

)
= 0).

▶ The fixed point condition implies that (after 𝜀 → 0):

p★ℓ

[
L∑︁

k=1

max
{
0,min

{
zk

(
p★

)
, 1

}}]
= max

{
0,min

{
zℓ

(
p★

)
, 1

}}
L∑︁
ℓ=1

zℓ
(
p★

)
p★ℓ︸           ︷︷           ︸

=0 by Walras’ Law

[
L∑︁

k=1

max
{
0,min

{
zk

(
p★

)
, 1

}}]
︸                                     ︷︷                                     ︸

Bounded due to the min

=

L∑︁
ℓ=1

zℓ
(
p★

)
max

{
0,min

{
zℓ

(
p★

)
, 1

}}︸                            ︷︷                            ︸
0 if zℓ (p★)<0

▶ The LHS is zero, so the RHS must be zero.
▶ Can’t have any zℓ

(
p★

)
> 0 because RHS must sum to zero and no term on the RHS

can be negative, so we must have z
(
p★

)
≤ 0.

▶ Can’t have any zℓ
(
p★

)
< 0 when z

(
p★

)
≤ 0 and p★ ≫ 0 because of Walras’ law:∑L

ℓ=1 pℓzℓ
(
p★

)
= 0.

▶ Therefore the RHS is only zero if z
(
p★

)
= 0.
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Arrow’s Exceptional Case: Nonexistence of Equilibrium

▶ Consider the following example in the Edgeworth box:

u1 (x11, x21) = x11 +
√
x21

u2 (x12, x22) = x22

with the initial endowment 𝝎1 = (𝜔1, 0) and 𝝎2 = (0, 𝜔2).
▶ At 𝝎, the slopes of both consumers’ indifference curves are 0.
▶ The initial endowment is Pareto optimal, but there is no vector of prices that can

sustain this allocation in equilibrium.
▶ If p2 = 0, both consumers demand an infinite amount of good 2.
▶ If p1 = 0, consumer 1 demands an infinite amount of good 1.
▶ If p1 > 0 and p2 > 0, consumer 1 demands some of good 2 but consumer 2 is never

willing to sell any.
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Uniqueness of Walrasian Equilibria

▶ Certain conditions on preferences and/or the endowments can guarantee that there
will be a unique equilibrium:

1. Strict convexity and Pareto optimality of the initial endowment.
2. Aggregate excess demand function satisfies WARP and all Yj have CRS (only achieves

convex set of equilibria).
3. Aggregate excess demand function has the gross substitute property for all goods.
4. If Dz (p) has full rank and is NSD.

▶ We will consider each of these cases in turn.
▶ Assume throughout that each consumer’s preferences are continuous, strictly

convex and strongly monotone and 𝝎 i ≫ 0.
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Pareto Optimality of the Initial Endowment
Proposition

In a pure exchange economy, if 𝝎 i ≫ 0, Xi = RL
+, and preferences ⪰i satisfy continuity,

strong monotonicity, and strict convexity for all i, then if (𝝎1, . . . ,𝝎I) is Pareto optimal,
then x★i = 𝝎 i ∀i is the unique equilibrium allocation.

▶ xi = 𝝎 i ∀i is an equilibrium by the 2nd Welfare Theorem.
▶ Suppose x′ ≠ 𝝎 and p′ is also an equilibrium.
▶ Because x′ is an equilibrium, x′i ⪰i 𝝎 i ∀i.
▶ It also satisfies feasibility:

∑I
i=1 x

′
i =

∑I
i=1 𝝎 i .

▶ By strict convexity, x′′i = 1
2x

′
i +

1
2𝝎 i satisfies x′′i ≻i 𝝎 i ∀i.

▶ Moreover, x′′i is feasible because:

I∑︁
i=1

x′′i =
1
2

I∑︁
i=1

x′i +
1
2

I∑︁
i=1

𝝎 i =

I∑︁
i=1

𝝎 i

▶ So x′′ Pareto dominates {𝝎 i}Ii=1, contradicting that it was Pareto optimal.
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WARP and Uniqueness

▶ Suppose Y ⊂ RL is a convex cone (constant returns).
▶ If y ∈ Y , then 𝛼y ∈ Y ∀𝛼 ≥ 0.

▶ If Y is a convex cone, then p is a Walrasian equilibrium iff:
(i) p · y ≤ 0 ∀y ∈ Y , and

(ii) z (p) ∈ Y .

▶ The excess demand function z (·) satisfies WARP if for any pair of price vectors p
and p′, we have:

z (p) ≠ z (p′) and p · z (p′) ≤ 0 implies p′ · z (p) > 0

▶ Given this assumption on technology, we are interested if aggregate demand
satisfying WARP implies uniqueness.
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WARP Implies Set of Equilibrium Price Vectors is Convex

Proposition

Suppose that the excess demand function z (·) is such that, for any constant returns
convex technology Y , the economy formed by z (·) and Y has a unique (normalized)
equilibrium price vector. Then z (·) satisfies WARP. Conversely, if z (·) satisfies WARP
then, for any constant returns technology Y , the set of equilibrium price vectors is
convex.

▶ WARP is necessary but not sufficient for uniqueness, but it does give convexity.
▶ If the set of normalized equilibria is finite, then by convexity there can be at most

one normalized price equilibrium.
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Proof: ⇒ Direction

Unique equilibrium with any convex cone Y ⇒ Aggregate WARP:
▶ Suppose not (WARP was violated).
▶ Then p · z (p′) ≤ 0 and p′ · z (p) ≤ 0, with z (p) ≠ z (p′)
▶ Consider the CRS convex Y★ given by:

Y★ =
{
y ∈ RL : p · y ≤ 0 and p′ · y ≤ 0

}
▶ But then both p and p′ would be an equilibrium with this Y★ because:

▶ p · y ≤ 0 and p′ · y ≤ 0 ∀y ∈ Y★.
▶ z (p) ∈ Y★ and z (p′) ∈ Y★

▶ p · z (p) = 0 by Walras’ law, and similarly for z (p′).
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L = 2 Example
WARP violated: p · z (p′) ≤ 0, p′ · z (p) ≤ 0 and z (p) ≠ z (p′) Convex cone production:

Y★ =
{
y ∈ RL : p · y ≤ 0 and p′ · y ≤ 0

}

Y★

z (p′)

z (p)

0
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Proof: ⇐ Direction

Aggregate WARP with any convex cone Y ⇒ set of equilibrium p is convex:

1. Need to show that if p and p′ are equilibria, then p𝛼 = 𝛼p + (1 − 𝛼) p′, 𝛼 ∈ [0, 1] is
also an equilibrium.

2. p𝛼 · y = 𝛼 p · y︸︷︷︸
≤0,∀y∈Y

+ (1 − 𝛼) p′ · y︸︷︷︸
≤0,∀y∈Y

≤ 0, ∀y ∈ Y .

3. 0 = p𝛼 · z (p𝛼 )︸            ︷︷            ︸
Walras’ law

= 𝛼p · z (p𝛼 ) + (1 − 𝛼) p′ · z (p𝛼 )

4. Either p · z (p𝛼 ) ≤ 0 or p′ · z (p𝛼 ) ≤ 0. Take p · z (p𝛼 ) ≤ 0.

5. Because z (p) ∈ Y , we know from step 2 that p𝛼 · z (p) ≤ 0

6. If z (p) ≠ z (p𝛼 ), WARP with Step 4 would imply that p𝛼 · z (p) > 0, contradicting
Step 5. Therefore we must have z (p) = z (p𝛼 ), so z (p𝛼 ) ∈ Y .

7. p𝛼 · y ≤ 0 ∀y ∈ Y and z (p𝛼 ) ∈ Y imply p𝛼 is also an equilibrium.
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The Gross Substitute Property

Definition
The function z (·) has the gross substitute (GS) property if whenever p′ and p are such
that, for some ℓ , p′ℓ > pℓ and p′k = pk for k ≠ ℓ , we have zk (p′) > zk (p) for all k ≠ ℓ .

For small changes, the gross substitute property means:

▶ 𝜕zk (p)
𝜕pℓ

> 0 for all k ≠ ℓ .
▶ This means Dz (p) is positive off the diagonal.
▶ Because z (p) is HD0, Dz (p) · p = 0, so the diagonal of Dz (p) must be negative.

If every individual satisfies GS, then so does aggregate demand.
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Two L = 2 Pure Exchange Examples

▶ Cobb-Douglas utility: u (x1, x2) = x𝛼1 x
1−𝛼
2 , 𝛼 ∈ (0, 1).

z (p) =
(
𝛼 (p1𝜔1 + p2𝜔2)

p1
− 𝜔1,

(1 − 𝛼) (p1𝜔1 + p2𝜔2)
p2

− 𝜔2

)

Dz (p) =
(−𝛼p2𝜔2

p2
1

𝛼𝜔2
p1

(1−𝛼 )𝜔1
p2

− (1−𝛼 )p1𝜔1

p2
2

)
Positive off the diagonal ⇒ Satisfies GS property (if 𝜔ℓ > 0 ∀ℓ).

▶ Quasilinear utility: u (x1, x2) = x1 + 2
√
x2, where we assume p · 𝝎 > 1/p2

2.

z (p) =
(
p2

p1
𝜔2 −

1
p1p2

,
1
p2

2
− 𝜔2

)
𝜕z1 (p)
𝜕p2

=
𝜔2
p1

+ 1
p1p2

2
and 𝜕z2 (p)

𝜕p1
= 0 ⇒ Violates GS property.
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GS Implies Uniqueness in Exchange Economies

Proposition

An aggregate excess demand function z (·) that satisfies the gross substitution property
has at most one exchange equilibrium.

▶ Suppose p and p′ were both equilibrium price vectors (and p′ was not proportional
to p.)

▶ We need to show that z (p) = z (p′) = 0 is not possible.
▶ Let m = max

ℓ

{
p′ℓ/pℓ

}
(by strong monotonicity, p ≫ 0).

▶ For at least one good, p′k = mpk , and z (mp) = 0 by HD0.
▶ Now imagine lowering the price of each good ℓ ≠ k sequentially from mpℓ to p′ℓ .

▶ By GS, the demand for good k will never increase.
▶ The demand for good k decreases whenever p′ℓ ≠ mpℓ .
▶ This happens at least once as p and p′ are not proportional.
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GS Uniqueness Proof with L = 2

▶ Suppose toward a contradiction that (p1, p2) and
(
p′1, p

′
2

)
where both equilibria with

the vectors not proportional.

▶ Suppose wlog that p′2
p2

>
p′1
p1

.
▶ Let p′2 = mp2. From above we know that p′1 < mp1.
▶ Because z (p1, p2) is HD0, z (mp1,mp2) = 0.
▶ When we change prices from (mp1,mp2) to

(
p′1, p

′
2

)
:

▶ The price of good 2 doesn’t change, but the price of good 1 falls.
▶ GS implies that the demand for good 2 decreases.
▶ But this means that z2

(
p′1, p

′
2

)
< 0, contradicting that

(
p′1, p

′
2

)
was an equilibrium.
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Regular Economies

▶ Assume the z (p) satisfies properties (i)-(v) & is continuously differentiable.
▶ Normalize pL = 1 and define ẑ (p) = (z1 (p) , . . . , zL−1 (p))
▶ With this, p = (p1, . . . , pL−1, 1) constitutes a Walrasian equilibrium iff ẑ (p) = 0.

Definition
An equilibrium price vector p is regular if the (L − 1) × (L − 1) matrix of price effects
Dẑ (p) is nonsingular.

Definition
If every normalized equilibrium price vector is regular, we say that the economy is
regular.
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Regular and Irregular Economies with L = 2

If L = 2, Dẑ (p) nonsingular ⇔ 𝜕z1 (p)
𝜕p1

≠ 0

0

z1

p1 0

z1

p1

• 𝜕z1 (p)
𝜕p1

≠ 0 at all equilibria • 𝜕z1 (p)
𝜕p1

= 0 at all equilibria
• Each equilibrium is regular • No equilibrium is regular
• Economy is regular • Economy is not regular
• All equilibria are locally isolated • No equilibrium is locally isolated
• Finite (odd) number of equilibria • Infinite number of equilibria
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Index Analysis

Definition
Suppose that p = (p1, . . . , pL−1, 1) is a regular equilibrium of the economy. Then we
denote:

index (p) = (−1)L−1 sgn ( |Dẑ (p) |)

where sgn (x) =

+1 if x > 0

0 if x = 0

−1 if x < 0
In the left L = 2 example, the indices are +1, −1, and +1

The Index Theorem
For any regular economy, we have: ∑︁

{p∈RL
+:z(p)=0,pL=1}

index (p) = 1
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Index Analysis

▶ For regular economies, the number of equilibria is always odd.
▶ If |Dẑ (p) | < 0 at all equilibria, then the equilibrium will be unique.
▶ The gross substitutes case is a special case of this:

▶ Dz (p) is NSD whenever z (p) = 0 and has rank L − 1. Therefore the determinant is
negative, so its index is +1.

▶ Finally, it can be shown that almost every vector of initial endowments
(𝝎1, . . . ,𝝎I) ∈ RLI

++, the economy defined by {⪰i,𝝎 i}Ii=1 is regular.
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Gérard Debreu (1921-2004)

▶ Born in Calais, France and educated at the École
Normale Supérieure Paris Sciences et Lettres.

▶ Along with his famous work with Kenneth Arrow
mentioned above, showed that regular economics have a
finite and odd number of price equilibria.

▶ Won the Nobel Memorial Prize in 1983.
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Stability: Price Tâtonnement
▶ Suppose at t = 0, the economy is out of equilibrium: z (p) ≠ 0.
▶ Assume prices adjust over time according to:

dpℓ
dt

= cℓzℓ (p) ∀ℓ

where cℓ > 0 is the speed of adjustment.
▶ Example with L = 2:

0

z1

p1
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Local and System Stability when L = 2

▶ Equilibrium relative prices p̄1
p̄2

are locally stable if, when p1 (0)
p2 (0) is close to it, the

dynamic trajectory causes relative prices to converge to p̄1
p̄2

.

▶ Conversely, equilibrium relative prices p̄1
p̄2

are locally totally unstable if relative prices

to diverge from p̄1
p̄2

.

▶ If the excess demand function is downward-sloping at p̄1
p̄2

then the equilibrium is
locally stable (and locally totally unstable if upward-sloping).

▶ There is system stability if for any initial position p1 (0)
p2 (0) , the corresponding trajectory

of relative prices p1 (t )
p2 (t ) converges to some equilibrium arbitrarily closely as t → ∞.
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Normalizing Prices to a Unit Sphere

▶ Normalize prices such that
∑L

ℓ=1 p
2
ℓ = 1

▶ Assume cℓ = c, ∀ℓ .
▶ As prices adjust, the Euclidian norm of the price vector changes according to:

d
dt

(
L∑︁
ℓ=1

p2
ℓ (t)

)
=

L∑︁
ℓ=1

2pℓ (t)
dpℓ
dt

= 2c
L∑︁
ℓ=1

pℓ (t) zℓ (p) = 0

where the last equality is from Walras’ law.
▶ Therefore prices are always on the unit sphere as they adjust.
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Examples

Image Source: Varian, Hal R. (2016) Microeconomic analysis

▶ In the first case, there is a unique stable equilibrium.
▶ In the second case, there is a unique stable equilibrium.
▶ In the third case, there is a unique totally unstable equilibrium.
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WARP, GS and Globally Stability

▶ GS ⇏ WARP and WARP ⇏ GS.
▶ However, both properties imply the following:

If z (p) = 0 and z (p′) ≠ 0, then p · z (p′) > 0

▶ WARP is defined as:

If z (p) ≠ z (p′) and p′ · z (p) ≤ 0, then p · z (p′) > 0

So if z (p) = 0, then p′ · z (p) = 0, so p · z (p′) > 0.

▶ GS with L = 2, p2 = 1 and z (p) = 0.
▶ GS with p′1 > p1 implies z1 (p′) < z1 (p) = 0.
▶ GS with p′1 < p1 implies z1 (p′) > z1 (p) = 0.
▶ Therefore

(
p′1 − p1

)
z1 (p′) < 0. So:

p · z (p′) = p1z1 (p′) + z2 (p′) > p′1z1 (p′) + z2 (p′) Walras
= 0
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Global Stability

The following proposition ensures that the WARP and GS cases we studied in the
uniqueness section have a globally stable equilibrium:

Proposition

Suppose that z
(
p★

)
= 0 and p★ · z (p) > 0 for every p not proportional to p★. Then the

relative prices of any solution trajectory of the differential equation dpℓ
dt = cℓzℓ (p), with

cℓ > 0 ∀ℓ converge to the relative prices of p★.
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Proof

▶ Construct a Lyapunov function using the Euclidean distance function:

V (p) =
L∑︁
ℓ=1

1
cℓ

(
pℓ − p★ℓ

)2

▶ For p not proportional to p★:

dV (p)
dt

= 2
L∑︁
ℓ=1

1
cℓ

(
pℓ (t) − p★ℓ

) dpℓ (t)
dt

= 2
L∑︁
ℓ=1

1
cℓ

(
pℓ (t) − p★ℓ

)
cℓzℓ (p (t)) = −2p★ · z (p (t)) < 0

▶ Because p★ minimizes V (p) and dV (p(t ) )
dt < 0 ∀p ≠ p★, by Lyapunov’s Theorem, p★

is globally stable.


