Equilibrium Welfare Properties

230333 Microeconomics 3 (CentER) – Part II Tilburg University

Introduction

- In this section we will prove:
 - The First Welfare Theorem: The allocation from any competitive equilibrium with transfers is Pareto optimal.
 - The Second Welfare Theorem: For any Pareto optimal allocation, there is a price vector that can support it as an equilibrium with transfers.
- Both theorems require complete markets, rational and locally nonsatiated preferences, and nonempty and closed production sets.
- However, the second welfare theorem requires a number of additional assumptions.

Kenneth Joseph Arrow (1921-2017)

- Born in New York City from Romanian parents and did his PhD at Columbia under Harold Hotelling.
- Together with Gérard Debreu offered the first rigorous proof of the existence of equilibrium and the fundamental welfare theorems using topological methods.
- Won the Nobel Memorial Prize in 1972 together with John Hicks.
- Also famous for Arrow's impossibility theorem in social choice and the Arrow-Debreu model of stage-contingent securities (with Gérard Debreu).

Price Equilibrium with Transfers

Definition

Given an economy specified by $(\{(X_i, \succeq_i)\}_{i=1}^l, \{Y_j\}_{j=1}^J, \bar{\omega})$, an allocation $(\mathbf{x}^*, \mathbf{y}^*)$ and a price vector \mathbf{p} constitute a *price equilibrium with transfers* if there is an assignment of wealth levels (w_1, \ldots, w_l) with $\sum_{i=1}^l w_i = \mathbf{p} \cdot \bar{\omega} + \sum_{j=1}^J \mathbf{p} \cdot \mathbf{y}_j^*$ such that

(i) For every j, y_i^* maximizes profits in Y_j ; that is,

 $\boldsymbol{p} \cdot \boldsymbol{y}_j \leq \boldsymbol{p} \cdot \boldsymbol{y}_j^{\star}$ for all $\boldsymbol{y}_j \in Y_j$

(ii) For every *i*, \mathbf{x}_i^{\star} is maximal for \succeq_i in the budget set:

 $\{\boldsymbol{x}_i \in X_i : \boldsymbol{p} \cdot \boldsymbol{x}_i \leq w_i\}$

(iii) $\sum_{i=1}^{J} \mathbf{x}_{i}^{\star} = \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \mathbf{y}_{j}^{\star}$.

If $w_i = \mathbf{p} \cdot \boldsymbol{\omega}_i + \sum_{j=1}^J \theta_{ij} \mathbf{p} \cdot \mathbf{y}_j \ \forall i$, then there are no transfers.

The First Fundamental Theorem of Welfare Economics

Theorem

If preferences are locally nonsatiated, and if $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{p})$ is a price equilibrium with transfers, then the allocation $(\mathbf{x}^*, \mathbf{y}^*)$ is Pareto optimal.

Proof:

- 1. Because $(\mathbf{x}^{\star}, \mathbf{y}^{\star}, \mathbf{p})$ is an equilibrium, if $\mathbf{x}_i \succ_i \mathbf{x}_i^{\star}$, then $\mathbf{p} \cdot \mathbf{x}_i > w_i$.
- 2. Furthermore, if $\mathbf{x}_i \succeq_i \mathbf{x}_i^{\star}$, then $\mathbf{p} \cdot \mathbf{x}_i \ge w_i$.
 - Suppose there is an \mathbf{x}'_i satisfying $\mathbf{x}'_i \succeq_i \mathbf{x}^{\star}_i$ but $\mathbf{p} \cdot \mathbf{x}'_i < w_i$.
 - ▶ By LNS, $\exists \mathbf{x}_i''$ arbitrarily close to \mathbf{x}_i' where $\mathbf{x}_i'' \succ_i \mathbf{x}_i'$ and $\mathbf{p} \cdot \mathbf{x}_i'' < w_i$.
 - But this contradicts that \mathbf{x}_i^* was maximal in *i*'s budget set, because by transitivity $\mathbf{x}_i'' \succ_i \mathbf{x}_i^*$.

First Welfare Theorem Proof

3. Suppose $\exists (\mathbf{x}', \mathbf{y}')$ that Pareto dominates $(\mathbf{x}^{\star}, \mathbf{y}^{\star})$.

By (1) & (2), $\mathbf{p} \cdot \mathbf{x}'_i \ge w_i \forall i \text{ and } \mathbf{p} \cdot \mathbf{x}'_i > w_i \text{ for at least one } i.$

• So
$$\sum_{i=1}^{I} \boldsymbol{p} \cdot \boldsymbol{x}'_{i} > \sum_{i=1}^{I} w_{i} = \boldsymbol{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \boldsymbol{p} \cdot \boldsymbol{y}_{j}^{\star}$$
.

4. Because y_j^* is profit-maximizing at p, for all j we have $p \cdot y_j^* \ge p \cdot y_j \ \forall y_j \in Y_j$.

► Therefore
$$\boldsymbol{p} \cdot \boldsymbol{\bar{\omega}} + \sum_{j=1}^{J} \boldsymbol{p} \cdot \boldsymbol{y}_{j}^{\star} \ge \boldsymbol{p} \cdot \boldsymbol{\bar{\omega}} + \sum_{j=1}^{J} \boldsymbol{p} \cdot \boldsymbol{y}_{j}^{\prime}$$

- 5. Because $(\mathbf{x}', \mathbf{y}')$ is Pareto improving: $\sum_{i=1}^{J} \mathbf{x}'_i = \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \mathbf{y}'_j$.
 - This implies $\sum_{i=1}^{J} \boldsymbol{p} \cdot \boldsymbol{x}_{i}^{\prime} = \boldsymbol{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \boldsymbol{p} \cdot \boldsymbol{y}_{j}^{\prime}$
- 6. But (3) & (4) imply $\sum_{i=1}^{J} \boldsymbol{p} \cdot \boldsymbol{x}_{i}' > \boldsymbol{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \boldsymbol{p} \cdot \boldsymbol{y}_{j}'$.
 - But this contradicts (5).

Separating and Supporting Hyperplane Theorems

We will use these two theorems to prove certain propositions:

Theorem (Separating Hyperplane Theorem)

Suppose that the convex sets $\mathcal{A} \subset \mathbb{R}^N$ and $\mathcal{B} \subset \mathbb{R}^N$ are disjoint. Then there is $\mathbf{p} \in \mathbb{R}^N$ with $\mathbf{p} \neq \mathbf{0}$ and a value $c \in \mathbb{R}$ such that $\mathbf{p} \cdot \mathbf{x} \ge c$ for every x in \mathcal{A} and $\mathbf{p} \cdot \mathbf{y} \le c$ for every $\mathbf{y} \in \mathcal{B}$.

▶ There is a hyperplane that separates *A* and *B*, with *A* and *B* on different sides of it.

Theorem (Supporting Hyperplane Theorem)

Suppose that $\mathcal{B} \subset \mathbb{R}^N$ is convex and that \mathbf{x} is not an element of the interior of the set \mathcal{B} . Then there is a $\mathbf{p} \in \mathbb{R}^N$ with $\mathbf{p} \neq \mathbf{0}$ such that $\mathbf{p} \cdot \mathbf{x} \ge \mathbf{p} \cdot \mathbf{y}$ for every $\mathbf{y} \in \mathcal{B}$.

Examples

- Example 1: 2 convex, disjoint sets. SHT can be applied.
- Example 2: 2 nonconvex, disjoint sets. SHT can't be applied.

SHT Example in the Robinson Crusoe Economy

- Suppose $(\mathbf{x}_1^{\star}, \mathbf{y}_1^{\star})$ is Pareto optimal.
- Crusoe's "better than set" is $V_1 = \{ \mathbf{x}_1 \in X_1 : \mathbf{x}_1 \succ_1 \mathbf{x}_1^* \}.$
- The two sets V_1 and $Y_1 + {\overline{\omega}}$ are:
 - disjoint (by Pareto the optimality of $(x_1^{\star}, y_1^{\star})$), and
 - convex (if \succeq_1 and Y_1 are convex).
- The separating hyperplane theorem can be applied.

SHT Example in the Robinson Crusoe Economy

► The SHT says $\exists p \neq 0$ and a *c* such that $p \cdot x_1 \ge c \forall x_1 \in V_1$ and $p \cdot (y_1 + \bar{\omega}) \le c \forall y_1 + \bar{\omega} \in Y_1 + \{\bar{\omega}\}.$

• What we will show: if we transfer wealth $w_1 = c = \mathbf{p} \cdot \mathbf{x}_1^*$ to Crusoe, $(\mathbf{x}_1^*, \mathbf{y}_1^*, \mathbf{p})$ is an equilibrium.

The Second Fundamental Theorem of Welfare Economics

Theorem

Consider an economy specified by $(\{(X_i, \succeq_i)\}_{i=1}^J, \{Y_j\}_{j=1}^J, \bar{\omega})$, and suppose that

- Every X_i is convex with $\mathbf{0} \in X_i$.
- Every preference relation \succeq_i is convex, continuous and locally nonsatiated.
- Every Y_i is convex and exhibits free disposal.

If $(\mathbf{x}^{\star}, \mathbf{y}^{\star})$ is a Pareto optimal allocation, where $\mathbf{x}_{i}^{\star} \gg \mathbf{0}$ for all *i*, there exists a price vector $\mathbf{p} \ge \mathbf{0}$, $\mathbf{p} \ne \mathbf{0}$ such that $(\mathbf{x}^{\star}, \mathbf{y}^{\star}, \mathbf{p})$ is a price equilibrium with transfers.

Thus, there is a price vector and an assignment of wealth levels (w_1, \ldots, w_l) satisfying $\sum_{i=1}^{l} w_i = \mathbf{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{l} \mathbf{p} \cdot \mathbf{y}_j^*$ such that $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{p})$ is a Walrasian equilibrium.

Second Welfare Theorem Proof: Preliminaries

The goal is to show that the wealth levels $w_i = \mathbf{p} \cdot \mathbf{x}_i^*$ for all *i* support $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{p})$ as a price equilibrium with transfers.

Define the sets:

$$V_i = \left\{ \mathbf{x}_i \in X_i : \mathbf{x}_i \succ_i \mathbf{x}_i^{\star} \right\} \subset \mathbb{R}^L$$

$$V = \sum_{i=1}^{I} V_i = \left\{ \sum_{i=1}^{I} \mathbf{x}_i \in \mathbb{R}^L : \mathbf{x}_1 \in V_1, \dots, \mathbf{x}_I \in V_I \right\}$$

$$Y = \sum_{j=1}^{J} Y_j = \left\{ \sum_{j=1}^{J} \mathbf{y}_j \in \mathbb{R}^L : \mathbf{y}_1 \in Y_1, \dots, \mathbf{y}_J \in Y_J \right\}$$

V is the set of aggregate consumption bundles that *could* be split across the *I* individuals with each *i* preferring it to x^{*}_i.

► $Y + {\bar{\omega}} = {\sum_{j=1}^{J} y_j + \bar{\omega} \in \mathbb{R}^L : y_1 \in Y_1, ..., y_j \in Y_j}$ is the set of aggregate bundles producible with the given technology and endowments.

With this, we split the proof into multiple steps.

Second Welfare Theorem Proof Outline

- Step 1 Every set V_i is convex.
- Step 2 The sets *V* and *Y* + { $\bar{\omega}$ } are convex.
- **Step 3** *V* and *Y* + { $\bar{\omega}$ } are disjoint.
- Step 4 There is a vector $p \ge 0$, $p \ne 0$ and a number *c* such that $p \cdot z \ge c$ for every $z \in V$ and $p \cdot z \le c$ for every $z \in Y + \{\overline{\omega}\}$.
- Step 5 If $\mathbf{x}_i \succeq_i \mathbf{x}_i^*$ for every *i*, then $\mathbf{p} \cdot \left(\sum_{i=1}^{l} \mathbf{x}_i\right) \ge c$.

Step 6
$$\boldsymbol{p} \cdot \left(\sum_{i=1}^{J} \boldsymbol{x}_{i}^{\star}\right) = \boldsymbol{p} \cdot \left(\bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \boldsymbol{y}_{j}^{\star}\right) = c.$$

- Step 7 For every *j*, we have $\boldsymbol{p} \cdot \boldsymbol{y}_j \leq \boldsymbol{p} \cdot \boldsymbol{y}_j^{\star}$ for all $\boldsymbol{y}_j \in Y_j$.
- Step 8 For every *i*, if $\mathbf{x}_i \succ_i \mathbf{x}_i^{\star}$, then $\mathbf{p} \cdot \mathbf{x}_i > \mathbf{p} \cdot \mathbf{x}_i^{\star}$.
- Step 9 Steps 7 & 8 with feasibility from the Pareto optimal allocation implies that the wealth levels $w_i = \mathbf{p} \cdot \mathbf{x}_i^*$ for all *i* support $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{p})$ as a price equilibrium with transfers.

Step 1

Every set
$$V_i = \{ \mathbf{x}_i \in X_i : \mathbf{x}_i \succ_i \mathbf{x}_i^* \}$$
 is convex.

- We need to show that if $\mathbf{x}_i \in V_i$ and $\mathbf{x}'_i \in V_i$, then $\mathbf{x}^{\alpha}_i = \alpha \mathbf{x}_i + (1 \alpha) \mathbf{x}'_i \in V_i$ for all $\alpha \in [0, 1]$.
- First, by the convexity of X_i , $\mathbf{x}_i^{\alpha} \in X_i$.
- $\mathbf{x}_i, \mathbf{x}'_i \in V_i$ means $\mathbf{x}_i \succ_i \mathbf{x}^{\star}_i$ and $\mathbf{x}'_i \succ_i \mathbf{x}^{\star}_i$.
- Suppose wlog that $\mathbf{x}_i \succeq_i \mathbf{x}'_i$.
- Because preferences are convex: $\mathbf{x}_i^{\alpha} \succeq_i \mathbf{x}_i' \, \forall \alpha \in [0, 1]$
- Then by transitivity $\mathbf{x}_i^{\alpha} \succ_i \mathbf{x}_i^{\star}$.
- Hence $\mathbf{x}_i^{\alpha} \in V_i$.

Step 2

The sets *V* and *Y* + { $\bar{\omega}$ } are convex.

- The sum of convex sets is convex.
 - See note at end of slide deck for I = 2 case.

Step 3

V and *Y* + { $\bar{\omega}$ } are disjoint.

- V contains all bundles that can be distributed such that everyone is strictly better off than with x_i^* .
- $Y + {\bar{\omega}}$ is the set of all feasible bundles.
- If they were not disjoint, then (x^{\star}, y^{\star}) would not be Pareto optimal.

Step 4

There is a vector $p \ge 0$, $p \ne 0$ and a number *c* such that $p \cdot z \ge c$ for every $z \in V$ and $p \cdot z \le c$ for every $z \in Y + \{\overline{\omega}\}$.

- That such a p ∈ ℝ^L, p ≠ 0 exists follows directly from the separating hyperplane theorem (two disjoint convex sets).
- We only need to rule out the possibility of $p_{\ell} < 0$ for any ℓ .
- ► Because firms have free disposal, if $p_{\ell} < 0$ then $\mathbf{p} \cdot \mathbf{y}_j$ could become unboundedly large, violating $\mathbf{p} \cdot \mathbf{z} \le c$ for all $\mathbf{z} \in Y + \{\bar{\boldsymbol{\omega}}\}$.

Step 5

If
$$\mathbf{x}_i \succeq_i \mathbf{x}_i^{\star}$$
 for every *i*, then $\mathbf{p} \cdot \left(\sum_{i=1}^l \mathbf{x}_i \right) \geq c$.

- ► Take $\mathbf{x}_i \succeq_i \mathbf{x}_i^*$. By LNS we have, $\forall \varepsilon > 0$, $\exists \hat{\mathbf{x}}_i$ satisfying $\|\hat{\mathbf{x}}_i \mathbf{x}_i\| \le \varepsilon$ such that $\hat{\mathbf{x}}_i \succ_i \mathbf{x}_i$.
- By transitivity $\hat{\mathbf{x}}_i \succ_i \mathbf{x}_i^{\star}$ so $\hat{\mathbf{x}}_i \in V_i$.
- Such a $\hat{\mathbf{x}}_i$ exists for every consumer, so $\sum_{i=1}^{I} \hat{\mathbf{x}}_i \in V$.
- By Step 4: $\boldsymbol{p} \cdot \left(\sum_{i=1}^{l} \hat{\boldsymbol{x}}_{i}\right) \geq c.$
- As $\varepsilon \to 0$ (so $\hat{\mathbf{x}}_i \to \mathbf{x}_i \forall i$), we have $\mathbf{p} \cdot \left(\sum_{i=1}^{l} \mathbf{x}_i\right) \ge c$.
 - Limits preserve inequalities.

► As a consequence of Step 5, because $\mathbf{x}_i^{\star} \succeq_i \mathbf{x}_i^{\star}$, we have $\mathbf{p} \cdot \left(\sum_{i=1}^{I} \mathbf{x}_i^{\star}\right) \ge c$

Step 6 $\boldsymbol{p} \cdot \left(\sum_{i=1}^{J} \boldsymbol{x}_{i}^{\star}\right) = \boldsymbol{p} \cdot \left(\bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \boldsymbol{y}_{j}^{\star}\right) = c.$

• By feasibility,
$$\sum_{i=1}^{J} \mathbf{x}_{i}^{\star} = \sum_{j=1}^{J} \mathbf{y}_{j}^{\star} + \bar{\boldsymbol{\omega}} \in Y + \{\bar{\boldsymbol{\omega}}\}.$$

► Therefore $\boldsymbol{p} \cdot \left(\sum_{i=1}^{l} \boldsymbol{x}_{i}^{\star}\right) \leq c$ because $\boldsymbol{p} \cdot \boldsymbol{z} \leq c$ for every $\boldsymbol{z} \in Y + \{\bar{\boldsymbol{\omega}}\}$.

• But Step 5 implies that
$$\boldsymbol{p} \cdot \left(\sum_{i=1}^{l} \boldsymbol{x}_{i}^{\star}\right) \geq c$$

• Therefore
$$\boldsymbol{p} \cdot \left(\sum_{i=1}^{l} \boldsymbol{x}_{i}^{\star} \right) = c.$$

Step 7

For every *j*, we have $\boldsymbol{p} \cdot \boldsymbol{y}_j \leq \boldsymbol{p} \cdot \boldsymbol{y}_j^{\star}$ for all $\boldsymbol{y}_j \in Y_j$.

► For all firms, $\forall y_j \in Y_j$ we have $y_j + \sum_{h \neq j} y_h^* \in Y$.

From Steps 4 and 6, $\forall y_j \in Y_j$:

$$\boldsymbol{p} \cdot \left(\boldsymbol{\bar{\omega}} + \boldsymbol{y}_j + \sum_{h \neq j} \boldsymbol{y}_h^{\star} \right) \leq c = \boldsymbol{p} \cdot \left(\boldsymbol{\bar{\omega}} + \boldsymbol{y}_j^{\star} + \sum_{h \neq j} \boldsymbol{y}_h^{\star} \right)$$

► Cancelling terms yields $\mathbf{p} \cdot \mathbf{y}_j \leq \mathbf{p} \cdot \mathbf{y}_j^*$ for all $\mathbf{y}_j \in Y_j$, for all j.

Step 8

For every *i*, if $\mathbf{x}_i \succ_i \mathbf{x}_i^{\star}$, then $\mathbf{p} \cdot \mathbf{x}_i > \mathbf{p} \cdot \mathbf{x}_i^{\star}$.

▶ If $x_i \succ_i x_i^*$, then $x_i \in V_i$. From Steps 5 and 6 above we have:

$$\boldsymbol{p} \cdot \left(\boldsymbol{x}_i + \sum_{k \neq i} \boldsymbol{x}_k^{\star} \right) \geq c = \boldsymbol{p} \cdot \left(\boldsymbol{x}_i^{\star} + \sum_{k \neq i} \boldsymbol{x}_k^{\star} \right)$$

• Cancelling terms yields $\boldsymbol{p} \cdot \boldsymbol{x}_i \geq \boldsymbol{p} \cdot \boldsymbol{x}_i^{\star}$.

Now we just need to rule out the $\mathbf{p} \cdot \mathbf{x}_i = \mathbf{p} \cdot \mathbf{x}_i^*$ case.

- Suppose toward a contradition there is a $\mathbf{x}'_i \in \mathbb{R}^L_+$ satisfying $\mathbf{x}'_i \succ_i \mathbf{x}^{\star}_i$ such that $\mathbf{p} \cdot \mathbf{x}'_i = \mathbf{p} \cdot \mathbf{x}^{\star}_i$.
- ► Because $\mathbf{0} \in X_i$ and X_i is convex, $\alpha \mathbf{x}'_i + (1 \alpha) \mathbf{0} \in X_i$ for all $\alpha \in [0, 1]$.
- Because $p \ge 0$, $p \ne 0$ and $x_i^* \gg 0$, we know that $p \cdot x_i^* > 0$
- $\forall \alpha \in [0, 1), \, \alpha \boldsymbol{p} \cdot \boldsymbol{x}'_i + (1 \alpha) \, \boldsymbol{p} \cdot \boldsymbol{0} < \boldsymbol{p} \cdot \boldsymbol{x}'_i.$
- By continuity, for α close enough to 1, $\alpha \mathbf{x}'_i \succ_i \mathbf{x}^{\star}_i$.
- As we have found a bundle that is preferred to x^{*}_i and is strictly cheaper, we have found a contradiction to what we found above.

Step 9

If we assign wealth levels $w_i = \mathbf{p} \cdot \mathbf{x}_i^*$ to each consumer, $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{p})$ is a price equilibrium with transfers.

This satisfies all the conditions for equilibrium:

▶ By Step 8: If $\mathbf{x}_i \succ_i \mathbf{x}_i^{\star}$, then $\mathbf{p} \cdot \mathbf{x}_i > w_i$, $\forall i$.

• \mathbf{x}_i^* is maximal for \succeq_i in the budget set.

► By Step 7:
$$\boldsymbol{p} \cdot \boldsymbol{y}_j \leq \boldsymbol{p} \cdot \boldsymbol{y}_j^{\star}$$
 for all $\boldsymbol{y}_j \in Y_j, \forall j$

- y_i^{\star} maximizes profits in Y_j .
- Because (x^{*}, y^{*}) is Pareto optimal, we have feasibility and hence market clearing in each good:

$$\sum_{i=1}^{I} \mathbf{x}_{i}^{\star} = \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \mathbf{y}_{j}^{\star}$$

Utility Possibilities Set and Pareto Frontier

Recall the utility possibility set:

$$\mathcal{U} = \left\{ (u_1, \dots, u_l) \in \mathbb{R}^l : \exists \text{ feasible } (\mathbf{x}, \mathbf{y}) \text{ s.t. } u_i \leq u_i (\mathbf{x}_i) \forall i \right\}$$

The Pareto frontier is:

$$\mathcal{UP} = \left\{ (u_1, \dots, u_l) \in \mathcal{U} : \text{there is no } (u'_1, \dots, u'_l) \in \mathcal{U} \\ \text{such that } u'_i \ge u_i \ \forall i \text{ and } u'_i > u_i \text{ for some } i \right\}$$

Theorem

A feasible allocation (\mathbf{x}, \mathbf{y}) is a Pareto optimum if and only if $(u_1(\mathbf{x}_1), \ldots, u_l(\mathbf{x}_l)) \in \mathcal{UP}$

Social Welfare

Suppose we have the linear social welfare function:

$$W(u_1,\ldots,u_l)=\sum_{i=1}^l\lambda_iu_i$$

where $\lambda_i \ge 0 \ \forall i$.

► The planner's problem is then:

$$\max_{\boldsymbol{u}\in\mathcal{U}}\boldsymbol{\lambda}\cdot\boldsymbol{u}$$

- The optimum of every linear social welfare function with $\lambda \gg 0$ is Pareto optimal.
- If U is convex, every Pareto optimal allocation is the solution to the planner's problem for *some* welfare weights.

All Social Welfare Optima are Pareto Optimal

Theorem

If \mathbf{u}^{\star} is a solution to the social welfare maximization problem

 $\max_{\boldsymbol{u}\in\mathcal{U}}\boldsymbol{\lambda}\cdot\boldsymbol{u}$

with $\lambda \gg 0$, then $\mathbf{u}^{\star} \in \mathcal{UP}$.

Proof: If not, there is another $u' \in \mathcal{U}$ where $u' \ge u^*$ and $u' \ne u^*$. Then, since $\lambda \gg 0$, we have $\lambda \cdot u' > \lambda \cdot u^*$, contradicting that u^* solved the planner's problem.

All Pareto Optimal Allocations are a Social Welfare Optimum

Theorem

If the set \mathcal{U} is convex, then for any $\widetilde{\mathbf{u}} \in \mathcal{UP}$, there is a vector of welfare weights $\lambda \ge 0$, $\lambda \neq 0$, such that $\lambda \cdot \widetilde{\mathbf{u}} \ge \lambda \cdot \mathbf{u}$ for all $\mathbf{u} \in \mathcal{U}$.

Proof: If $\tilde{u} \in \mathcal{UP}$, then $\tilde{u} \in bd(\mathcal{U})$. Using the convexity of \mathcal{U} , by the supporting hyperplane theorem, $\exists \lambda \neq \mathbf{0}$ such that $\lambda \cdot \tilde{u} \geq \lambda \cdot u \ \forall u \in \mathcal{U}$. Moreover $\lambda \geq \mathbf{0}$ since otherwise you could choose a $u_i < 0$ large enough in absolute value to get $\lambda \cdot u > \lambda \cdot \tilde{u}$.

When is $\mathcal U$ convex?

If each X_i and Y_i is convex and each $u_i(\mathbf{x}_i)$ is concave, then \mathcal{U} is convex (part of tutorial 3).

First-Order Conditions for Pareto Optimality

- Assume now $X_i = \mathbb{R}^L_+$ for all *i*.
- ► \succeq_i is represented by $u_i(\mathbf{x}_i)$ which is twice continuously differentiable and satisfies $\nabla u_i(\mathbf{x}_i) \gg \mathbf{0}$ and $u_i(\mathbf{0}) = 0$.
- ► Firm *j*'s production set is $Y_j = \{ \mathbf{y} \in \mathbb{R}^L : F_j(\mathbf{y}) \le 0 \}$, where $F_j : \mathbb{R}^L \to \mathbb{R}$ is twice continuously differentiable, $F_j(\mathbf{0}) \le 0$ and $\nabla F_j(\mathbf{y}_j) \gg \mathbf{0}$.
- ► (**x**, **y**) is Pareto optimal if it solves:

$$\max_{\left(\boldsymbol{x}\in\mathbb{R}^{L}_{+},\boldsymbol{y}\in\mathbb{R}^{L}\right)} u_{1}\left(\boldsymbol{x}_{1}\right)$$

subject to:

•
$$u_i(\mathbf{x}_i) \ge \overline{u}_i$$
 for all $i = 2, ..., I$.
• $F_j(\mathbf{y}_j) \le 0$ for all $j = 1, ..., J$
• $\sum_{i=1}^{I} x_{\ell i} \le \overline{\omega}_{\ell} + \sum_{j=1}^{J} y_{\ell j}$ for all $\ell = 1, ..., L$.

First-Order Conditions for Pareto Optimality

The Lagrangian is:

$$\mathcal{L}(\cdot) = u_{1}(\mathbf{x}_{1}) + \sum_{i=2}^{l} \delta_{i}(u_{i}(\mathbf{x}_{i}) - \bar{u}_{i}) + \sum_{i=1}^{l} \sum_{\ell=1}^{L} \xi_{\ell i} x_{\ell i} - \sum_{j=1}^{J} \gamma_{j} F_{j}(\mathbf{y}_{j}) + \sum_{\ell=1}^{L} \mu_{\ell} \left(\bar{\omega}_{\ell} + \sum_{j=1}^{J} y_{\ell j} - \sum_{i=1}^{l} x_{\ell i} \right)$$

- All constraints except for nonnegativity (with multipliers $\xi_{\ell i}$) will necessarily bind at the optimum.
- The first-order conditions are (where $\delta_1 = 1$):

$$\begin{aligned} x_{\ell i} &: \delta_i \frac{\partial u_i}{\partial x_{\ell i}} + \xi_{\ell i} - \mu_{\ell} = 0 \text{ for all } i, \ell \text{ where } \xi_{\ell i} = 0 \text{ if } x_{\ell i} > 0 \\ y_{\ell j} &: \mu_{\ell} - \gamma_j \frac{\partial F_j}{\partial y_{\ell}} = 0 \text{ for all } j, \ell \end{aligned}$$

First-Order Conditions for Pareto Optimality

At an interior solution $\mathbf{x}_i \gg \mathbf{0}$ for all *i*:

Equal
$$MRS_{i\ell\ell'}$$
 across i :

$$\frac{\frac{\partial u_i}{\partial x_{\ell i}}}{\frac{\partial u_i}{\partial x_{\ell' j}}} = \frac{\frac{\partial u_{i'}}{\partial x_{\ell i'}}}{\frac{\partial u_{i'}}{\partial x_{\ell' j'}}} \qquad \text{for all } i, i', \ell, \ell'$$
Equal $MRTS_{j\ell\ell'}$ across j :

$$\frac{\frac{\partial F_j}{\partial y_{\ell j}}}{\frac{\partial F_j}{\partial y_{\ell' j}}} = \frac{\frac{\partial F_{j'}}{\partial y_{\ell' j'}}}{\frac{\partial F_{j'}}{\partial y_{\ell' j'}}} \qquad \text{for all } j, j', \ell, \ell'$$
 $MRS_{i\ell\ell'} = MRTS_{j\ell\ell'}$ for each i, j :

$$\frac{\frac{\partial u_i}{\partial x_{\ell i}}}{\frac{\partial u_i}{\partial x_{\ell' j}}} = \frac{\frac{\partial F_j}{\partial y_{\ell j'}}}{\frac{\partial F_j}{\partial y_{\ell' j'}}} \qquad \text{for all } i, j, \ell, \ell'$$

2

Note: If V_1 and V_2 are convex, $V = V_1 + V_2$ is convex

- Take $\mathbf{x}' = \mathbf{x}'_1 + \mathbf{x}'_2 \in V$ and and $\mathbf{x}'' = \mathbf{x}''_1 + \mathbf{x}''_2 \in V$.
- WTS: $\forall \alpha \in [0, 1]$ that $\alpha \mathbf{x'} + (1 \alpha) \mathbf{x''} \in V$.
- $\mathbf{x}'_1 \in V_1$ and $\mathbf{x}''_1 \in V_1$ and similarly for \mathbf{x}'_2 and \mathbf{x}''_2 .
- Because V_1 and V_2 are convex, $\forall \alpha \in [0, 1]$, $\mathbf{x}_1^{\alpha} = \alpha \mathbf{x}_1' + (1 \alpha) \mathbf{x}_1'' \in V_1$ and similarly $\mathbf{x}_2^{\alpha} \in V_2$.
- So, by the definition of *V*:

$$\alpha \mathbf{x}' + (1 - \alpha) \, \mathbf{x}'' = \alpha \left(\mathbf{x}_1' + \mathbf{x}_2' \right) + (1 - \alpha) \left(\mathbf{x}_1'' + \mathbf{x}_2'' \right) \\ = \alpha \mathbf{x}_1' + (1 - \alpha) \, \mathbf{x}_1'' + \alpha \mathbf{x}_2' + (1 - \alpha) \, \mathbf{x}_2'' \\ = \mathbf{x}_1^{\alpha} + \mathbf{x}_2^{\alpha}$$

This is an element of V since it is the sum of two vectors which are each elements of V₁ and V₂.

Note: Limits Preserve Inequalities

- Consider the sequence $\sum_{i=1}^{l} \widehat{\mathbf{x}}_i \to \sum_{i=1}^{l} \mathbf{x}_i$ where $\mathbf{p} \cdot \left(\sum_{i=1}^{l} \widehat{\mathbf{x}}_i \right) \ge c$.
- We want to show that this inequality is preserved at the limit: $\mathbf{p} \cdot \left(\sum_{i=1}^{l} \mathbf{x}_{i}\right) \geq c$.
- Suppose toward a contradiction that instead $\boldsymbol{p} \cdot \left(\sum_{i=1}^{l} \boldsymbol{x}_{i}\right) = d < c$.
- From the definition of the limit of a function:

$$\lim_{\sum_{i=1}^{I} \widehat{\mathbf{x}}_i \to \sum_{i=1}^{I} \mathbf{x}_i} \mathbf{p} \cdot \left(\sum_{i=1}^{I} \widehat{\mathbf{x}}_i\right) = d$$

implies that $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\forall \sum_{i=1}^{l} \widehat{\mathbf{x}}_i, 0 < |\sum_{i=1}^{l} \widehat{\mathbf{x}}_i - \sum_{i=1}^{l} \mathbf{x}_i| < \delta$ implies that $|\mathbf{p} \cdot (\sum_{i=1}^{l} \widehat{\mathbf{x}}_i) - d| < \varepsilon$. This holds for all $\alpha > 0$. Choose $\alpha = \alpha$, $d \exists \delta > 0$ at $\forall \sum_{i=1}^{l} \widehat{\mathbf{x}}_i$.

This holds for all $\varepsilon > 0$. Choose $\varepsilon = c - d$. $\exists \delta > 0$ s.t. $\forall \sum_{i=1}^{l} \widehat{x}_i$, $0 < \left| \sum_{i=1}^{l} \widehat{x}_i - \sum_{i=1}^{l} x_i \right| < \delta \Longrightarrow \left| p \cdot \left(\sum_{i=1}^{l} \widehat{x}_i \right) - d \right| < \varepsilon = c - d$. But then:

$$-\varepsilon < \mathbf{p} \cdot \left(\sum_{i=1}^{l} \widehat{\mathbf{x}}_i\right) - d < \varepsilon = c - d \implies \mathbf{p} \cdot \left(\sum_{i=1}^{l} \widehat{\mathbf{x}}_i\right) < c \implies \text{Contradiction!}$$