Equilibrium Welfare Properties

230333 Microeconomics 3 (CentER) — Part Il
Tilburg University



Introduction

» In this section we will prove:
> The First Welfare Theorem: The allocation from any competitive equilibrium with
transfers is Pareto optimal.
> The Second Welfare Theorem: For any Pareto optimal allocation, there is a price vector
that can support it as an equilibrium with transfers.
» Both theorems require complete markets, rational and locally nonsatiated
preferences, and nonempty and closed production sets.

» However, the second welfare theorem requires a number of additional assumptions.



Kenneth Joseph Arrow (1921-2017)

» Born in New York City from Romanian parents and did
his PhD at Columbia under Harold Hotelling.

> Together with Gérard Debreu offered the first rigorous
proof of the existence of equilibrium and the
fundamental welfare theorems using topological
methods.

> Won the Nobel Memorial Prize in 1972 together with
John Hicks.

» Also famous for Arrow’s impossibility theorem in social
choice and the Arrow-Debreu model of stage-contingent
securities (with Gérard Debreu).




Price Equilibrium with Transfers

Definition
Given an economy specified by ({(X;, t,-)},(:1 , {Yj}j:1 ,(I)), an allocation (x*,y*) and a

price vector p constitute a price equilibrium with transfers if there is an assignment of
wealth levels (wy, ..., w) with Zfﬂ wi=p- o+ Zjﬂ p- yj’.‘ such that

(i) Forevery j, y}‘ maximizes profits in Yj; that is,
Py, Sp'yjfforallyje Y;
(i) For every i, x* is maximal for x; in the budget set:
{xieXi:p-xi < w}
(i) Djey xF =@+ XL, y7

Ifwi=p-w;+ Zjﬂ 0iip - y; Vi, then there are no transfers.



The First Fundamental Theorem of Welfare Economics

Theorem

If preferences are locally nonsatiated, and if (x*, y*, p) is a price equilibrium with transfers,
then the allocation (x*, y*) is Pareto optimal.

Proof:

1. Because (x*,y*, p) is an equilibrium, if x; > x¥, then p- x; > w;.
2. Furthermore, if x; =; x¥, then p - x; > w;.

> Suppose there is an x| satisfying x} =; x* but p - x} < w;.
> By LNS, 3x?" arbitrarily close to x; where x}" >; x; and p - x}" < w;.

> But this contradicts that x}* was maximal in i’s budget set, because by transitivity
X\ =i XY



First Welfare Theorem Proof

3. Suppose 3 (x’,y’) that Pareto dominates (x*, y*).
> By (1) &(2), p-x; > w; Yiand p - x; > w; for at least one i.
> S0 p-x;> Nl wi=p-&+Y p-yl
4. Because yj’.‘ is profit-maximizing at p, for all j we have p - yj’.‘ 2p-yjVy; eV
> Thereforep~E)+Zj:1p-y;f > p-(Z)+Zj:]p~y;.
5. Because (x’,y’) is Pareto improving: 25:1 X =+ Zjﬂ y;..
> This implies Z,’ﬂ pxX,=p-o+ Zjﬂ p: y;
6. But (3) & (4) imply le.ﬂ p-XxX.>p @+ Zjﬂ p: y;..

> But this contradicts (5).



Separating and Supporting Hyperplane Theorems

We will use these two theorems to prove certain propositions:
Theorem (Separating Hyperplane Theorem)

Suppose that the convex sets A C RN and B ¢ RN are disjoint. Then there is p € RN with
p # 0 and a value c € R such that p - x > c for every x in A andp -y < c foreveryy € B.

» There is a hyperplane that separates A and B, with A and B on different sides of it.

Theorem (Supporting Hyperplane Theorem)

Suppose that B C RN is convex and that x is not an element of the interior of the set B.
Then there is a p € RN with p # 0 such thatp -x > p -y for every y € B.



Examples

> Example 1: 2 convex, disjoint sets. SHT can be applied.
» Example 2: 2 nonconvex, disjoint sets. SHT can’t be applied.

8/31



SHT Example in the Robinson Crusoe Economy
Suppose (x}, y¥) is Pareto optimal.
Crusoe’s “better than set” is V; = {x1 € Xi: X1 > xf}
> The two sets V; and Y; + {@} are:

> disjoint (by Pareto the optimality of (x¥, y¥)), and

> convex (if =7 and Y7 are convex).
The separating hyperplane theorem can be applied.
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SHT Example in the Robinson Crusoe Economy

> The SHT says 3p # 0 and a csuch that p-x; > cV¥x; € Viand p- (y, +@) < ¢
Vy,+@ € Y: +{®}.

> What we will show: if we transfer wealth w; = ¢ = p - xT to Crusoe, (xT, y%, p) is an
equilibrium.



The Second Fundamental Theorem of Welfare Economics

Theorem
Consider an economy specified by ({(X,, t,)}, 1 { Y; }

=10 ) and suppose that

> Every X; is convex with 0 € X;.
> Every preference relation =; is convex, continuous and locally nonsatiated.
> Every Y; is convex and exhibits free disposal.

If (x*, y*) is a Pareto optimal allocation, where x* > 0 for all i, there exists a price vector
p= 0, p # 0 such that (x*, y*, p) is a price equilibrium with transfers.

Thus, there is a price vector and an assignment of wealth levels (wy, ..., w)) satisfying
SLowi=p-a+ ZJ NE yJ such that (x*, y*, p) is a Walrasian equilibrium.



Second Welfare Theorem Proof: Preliminaries

The goal is to show that the wealth levels w; = p - x for all i support (x*,y*, p) as a
price equilibrium with transfers.
Define the sets:

> V;={x;€Xi:x; >,-xl’.‘} c Rt

> V=YL Vi={Z_ xieR:x; € V4,...,x; € V}}

> YZZj=1 YJ':{ZjﬂYJERLZH €Ny € Yj}

> Vs the set of aggregate consumption bundles that could be split across the |
individuals with each i preferring it to x7.

> Y+{w}= {Zjﬂ ytoe€ RE:y, e Vy,. .Yy € YJ} is the set of aggregate bundles
producible with the given technology and endowments.

With this, we split the proof into multiple steps.



Second Welfare Theorem Proof Outline

Step 1 Every set V; is convex.

Step 2 The sets V and Y + {@} are convex.

Step 3 V and Y + {®} are disjoint.

Step 4 There is a vector p > 0, p # 0 and a number c such that p-z > cforeveryze V
and p-z < cforeveryz e Y+ {®}.

Step 5 If x; =; x* for every i, then p - (Z,’»ﬂ xi) >c

Step6 p- (Zfﬂ xf) =p- ((I) + Zjﬂ yj*) =c

Step 7 For every j,we havep-y; <p- yj’.‘ forally; € Y}

Step 8 For every i, if x; =; x, then p-x; > p - x7.

Step 9 Steps 7 & 8 with feasibility from the Pareto optimal allocation implies that the

wealth levels w; = p - x* for all i support (x*, y*, p) as a price equilibrium with
transfers.



Second Welfare Theorem Proof

Every set V; = {xi € Xi:x; =i xf} is convex.

> We need to show that if x; € V; and x} € V;, then x¥ = ax; + (1 - a) x; € V; for all
a € [0,1].
First, by the convexity of X, x¥ € Xj.

xj,X; € Vi means x; ~; x; and x} »; x.
. . ’
Suppose wlog that x; =; x’.
Because preferences are convex: x{ =; x; Ve € [0, 1]

Then by transitivity x& ~; x7.

vV V.V vV VY

Hence x¥ € V.



Second Welfare Theorem Proof

The sets V and Y + {@} are convex.

» The sum of convex sets is convex.
> See note at end of slide deck for | = 2 case.

Vand Y + {@} are disjoint.

» V contains all bundles that can be distributed such that everyone is strictly better
off than with x*.
> Y+ {@} is the set of all feasible bundles.

> If they were not disjoint, then (x*, y*) would not be Pareto optimal.



Second Welfare Theorem Proof

There is a vector p > 0, p # 0 and a number ¢ such that p - z > c for every z € V and
p-z<cforeveryze Y+ {w}.

> That such a p € RL, p # 0 exists follows directly from the separating hyperplane
theorem (two disjoint convex sets).

> We only need to rule out the possibility of p, < 0 for any ¢.

> Because firms have free disposal, if p; < 0 then p - y; could become unboundedly
large, violating p-z < cforallz € Y + {®}.



Second Welfare Theorem Proof

If x; =; x;" for every i, then p - ( ,{:1 xi) > c.

» Take x; =; xf. By LNS we have, Ve > 0, 3%; satisfying ||X; — x;|| < € such that
)?,' i Xj.

> By transitivity X; >; x so X; € V..

» Such a X; exists for every consumer, so Z,I':1 x;je V.

> By Step4:p- (25:1 )“(i) >c

> As e — 0(sox; — x; Vi), we have p - (ZL1 x;) >c.

> Limits preserve inequalities.



Second Welfare Theorem Proof

> As a consequence of Step 5, because x* >; x*, we have p - (2521 xf) >c

P (25:1 X,-*) =p- (5)+ij1 y}*) =c

> By feasibility, ¥,_, x* = Zjﬂ y}k +o €Y+ {d}
» Therefore p - (ZL1 xf) < cbecause p-z < cforeveryz € Y + {®}.
> But Step 5 implies that p - (ZL] xf) >c

» Therefore p - (25:1 xf) =c.



Second Welfare Theorem Proof

For every j, wehavep-y, <p- y}* forally; € Y;.

> Forall firms,Vy; € Y; we have y; + X1, yy € V.
> From Steps 4 and 6, Vy; € Y;:

p- &>+yj+2y2 <c=p- (I)+yj.‘+2y2‘
h#j h#j

> Cancelling terms yieldsp-y;, < p- y;‘ forall y; € Y}, for all j.



Second Welfare Theorem Proof

For every i, if x; =; x¥, then p - x; > p - x*.

> If x; =; xf, then x; € V;. From Steps 5 and 6 above we have:

P'(""*ZXZ) C=P-(X;*+ZXZ)

k#i k#i

v

> Cancelling terms yields p - x; > p - x*.

> Now we just need to rule out the p - x; = p - X case.



Second Welfare Theorem Proof

vy v v VvVYy

Suppose toward a contradition there is a x’; € RL satisfying x =i x* such that
p-x;=p-xr.

Because 0 € X; and X; is convex, ax’ + (1—a) 0 € X; for all « € [0, 1].
Because p > 0, p # 0 and x* > 0, we know that p - x¥ > 0

Ya € [0,1),ap - x'+(1-a)p-0<p-x*.

By continuity, for a close enough to 1, ax/ »; x*.

As we have found a bundle that is preferred to x> and is strictly cheaper, we have
found a contradiction to what we found above.



Second Welfare Theorem Proof

If we assign wealth levels w; = p - x to each consumer, (x*, y*, p) is a price equilibrium
with transfers.

This satisfies all the conditions for equilibrium:
> By Step 8: If x; =; x¥, then p- x; > w;, Vi.
> x7* is maximal for ; in the budget set.
> ByStep7:p-y; < p-yfforall Y, €Y Vj
> y;f maximizes profits in Y.

> Because (x*, y*) is Pareto optimal, we have feasibility and hence market clearing in

each good:
J
DX =a+ )y
. ‘=

i=1



Utility Possibilities Set and Pareto Frontier

» Recall the utility possibility set:
U = {(u1,..., u)) € R! : Ffeasible (x,y) s.t. uj < u; (x;) Vi}
» The Pareto frontier is:
UP = {(ub...,u,) € U : thereisno (uj,...,u)) €U

such that u} > u; Vi and u; > u; for some i}

A feasible allocation (x, y) is a Pareto optimum if and only if (uy (x1), ..., u;(x;)) € UP



Social Welfare

> Suppose we have the linear social welfare function:

I
Wiuy, ..., u) = Z/liui
i=1

where A; > 0 Vi.

» The planner’s problem is then:

max A - u
ueld

» The optimum of every linear social welfare function with A > 0 is Pareto optimal.

> If U is convex, every Pareto optimal allocation is the solution to the planner’s
problem for some welfare weights.



All Social Welfare Optima are Pareto Optimal

If u* is a solution to the social welfare maximization problem

max A - u
ueld

with A > 0, then u* € UP.

Proof: If not, there is another u’ € U where u’ > u* and u’ # u*. Then, since A > 0,
we have A - u’ > A - u*, contradicting that u* solved the planner’s problem.



All Pareto Optimal Allocations are a Social Welfare Optimum

Theorem

If the set U is convex, then for any u € UP, there is a vector of welfare weights A > 0,
A #0,suchthatA-u>A-uforallueU.

Proof: If u € UP, then u € bd (U). Using the convexity of U, by the supporting
hyperplane theorem, 3A # 0 such that A - u > A - u Yu € U. Moreover A > 0 since
otherwise you could choose a u; < 0 large enough in absolute value toget A -u > A - u.

When is U convex?

> If each X and Y; is convex and each u; (x;) is concave, then U is convex (part of
tutorial 3).



First-Order Conditions for Pareto Optimality

> Assume now X; = RL for all i.

> = is represented by u; (x;) which is twice continuously differentiable and satisfies
v u;i(x;) > 0and u; (0) = 0.

> Firm j’s production set is Y; = {y eRMFi(y) < 0}, where F; : Rt — R is twice
continuously differentiable, F; (0) < 0 and VF; (yj) > 0.
> (x,y) is Pareto optimal if it solves:

max  uy (xq)
(xe]Ri,ye]RL)

subject to:
> ui(x;)) =uiforalli=2,...,1
= Fj(yj)SOforallsz...,j

> Z,’-=1 Xpi < Oy +Zj:1 yejforalle=1,..., L



First-Order Conditions for Pareto Optimality
The Lagrangian is:

| I L
L) =u () + )8 (i (xi) = T) + Y > Enixeim

i=2 i=1 t=1

Z”(J*iw@”im 2@)

=1 =1

> All constraints except for nonnegativity (with multipliers &;) will necessarily bind
at the optimum.

» The first-order conditions are (where §; = 1):
ou; . ,
Xpj - 5i8_ + & — e =0forall i, £ where &; =0 if x;; > 0
X,

Li

oF;
Ve pe =Yg =0forall j,¢
e



First-Order Conditions for Pareto Optimality

At an interior solution x; > 0 for all /:

aui 3u,»/
. Ixei . OXgi . ’
Equal MRS;ey across i: 2 = “oup forall i,/ ¢,¢
ax,/,- axe/,-/
. Ayej y,j A ,
Equal MRTSj;; across j: F = oF, forall j,j,¢,¢
Ay Ayt jr
adu; oF;
.. Iy yej ..
MRSi¢er = MRTSjg for each i, j: a_ul,-l = aFj} forall i, j, £, ¢’

2 (7% 1



Note: If V4 and V, are convex, V = V; + V, is convex

Take x’ = x7 +x; € Vand and x"” = x{ +x} € V.
WTS:Va € [0,1] thatax’ + (1—a)x” € V.

x7 € Vyand x| € V; and similarly for x), and x.

v v.vyy

Because V; and V; are convex, Var € [0, 1], x{ = ax} + (1 - a) x| € V; and similarly
X(ZX € V,.
» So, by the definition of V:
ax' +(1—a)x" =a (xj+x5) + (1 - a) (x{ +x5)

=axi+(1—-a)x} +axi+(1-a)xy

= x5 + x5
» This is an element of V since it is the sum of two vectors which are each elements
of V; and V..



Note: Limits Preserve Inequalities

Consider the sequence ZLT X; — Zfﬂ x; where p - ( ,’-=1 33;) > c.

We want to show that this inequality is preserved at the limit: p - (Z,’-:1 x;) > c.
Suppose toward a contradiction that instead p - (ZLT x,-) =d<c

v vy Vv oy

From the definition of the limit of a function:

|
; Allmzl(:1 Xip . (Z X,) = d

i=1 Xi—™ i=1

implies that Ve > 0, 35 > 0 s.t. VZL1 x;, 0 < |le.:1 X;— 25:1 x,-| < § implies that
’p- (z;z1 ;,) - d‘ <e.

» This holds for all ¢ > 0. Choose e = ¢ — d. 35 > 0 s.t. VZLT X,
0<|ZL%i-Zhox| <5=|p- (ZLi%) - d| <e=c-d.

» But then:
!

1
—€<p-(2?,-)—d<€=c—d = p-(Z?i)<c =  Contradiction!
=1

i=1



