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Introduction

▶ In this section we will prove:
▶ The First Welfare Theorem: The allocation from any competitive equilibrium with

transfers is Pareto optimal.
▶ The Second Welfare Theorem: For any Pareto optimal allocation, there is a price vector

that can support it as an equilibrium with transfers.

▶ Both theorems require complete markets, rational and locally nonsatiated
preferences, and nonempty and closed production sets.

▶ However, the second welfare theorem requires a number of additional assumptions.
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Kenneth Joseph Arrow (1921-2017)

▶ Born in New York City from Romanian parents and did
his PhD at Columbia under Harold Hotelling.

▶ Together with Gérard Debreu offered the first rigorous
proof of the existence of equilibrium and the
fundamental welfare theorems using topological
methods.

▶ Won the Nobel Memorial Prize in 1972 together with
John Hicks.

▶ Also famous for Arrow’s impossibility theorem in social
choice and the Arrow-Debreu model of stage-contingent
securities (with Gérard Debreu).
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Price Equilibrium with Transfers

Definition
Given an economy specified by

(
{(Xi, ⪰i)}Ii=1 ,

{
Yj

}J
j=1 , �̄�

)
, an allocation

(
x★, y★

)
and a

price vector p constitute a price equilibrium with transfers if there is an assignment of
wealth levels (w1, . . . ,wI) with

∑I
i=1 wi = p · �̄� + ∑J

j=1 p · y★j such that

(i) For every j, y★j maximizes profits in Yj ; that is,

p · yj ≤ p · y★j for all yj ∈ Yj

(ii) For every i, x★i is maximal for ⪰i in the budget set:

{xi ∈ Xi : p · xi ≤ wi}

(iii)
∑I

i=1 x
★
i = �̄� + ∑J

j=1 y
★
j .

If wi = p · 𝝎 i +
∑J

j=1 𝜃 ijp · yj ∀i, then there are no transfers.
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The First Fundamental Theorem of Welfare Economics

Theorem
If preferences are locally nonsatiated, and if

(
x★, y★, p

)
is a price equilibrium with transfers,

then the allocation
(
x★, y★

)
is Pareto optimal.

Proof:
1. Because

(
x★, y★, p

)
is an equilibrium, if xi ≻i x★i , then p · xi > wi .

2. Furthermore, if xi ⪰i x★i , then p · xi ≥ wi .
▶ Suppose there is an x′i satisfying x′i ⪰i x★i but p · x′i < wi .
▶ By LNS, ∃x′′i arbitrarily close to x′i where x′′i ≻i x′i and p · x′′i < wi .
▶ But this contradicts that x★i was maximal in i’s budget set, because by transitivity

x′′i ≻i x★i .
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First Welfare Theorem Proof

3. Suppose ∃ (x′, y′) that Pareto dominates
(
x★, y★

)
.

▶ By (1) & (2), p · x′i ≥ wi ∀i and p · x′i > wi for at least one i.
▶ So

∑I
i=1 p · x′i >

∑I
i=1 wi = p · �̄� + ∑J

j=1 p · y★j .

4. Because y★j is profit-maximizing at p, for all j we have p · y★j ≥ p · yj ∀yj ∈ Yj .

▶ Therefore p · �̄� + ∑J
j=1 p · y★j ≥ p · �̄� + ∑J

j=1 p · y′
j .

5. Because (x′, y′) is Pareto improving:
∑I

i=1 x
′
i = �̄� + ∑J

j=1 y
′
j .

▶ This implies
∑I

i=1 p · x′i = p · �̄� + ∑J
j=1 p · y′

j

6. But (3) & (4) imply
∑I

i=1 p · x′i > p · �̄� + ∑J
j=1 p · y′

j .
▶ But this contradicts (5).
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Separating and Supporting Hyperplane Theorems

We will use these two theorems to prove certain propositions:

Theorem (Separating Hyperplane Theorem)

Suppose that the convex sets A ⊂ RN and B ⊂ RN are disjoint. Then there is p ∈ RN with
p ≠ 0 and a value c ∈ R such that p · x ≥ c for every x in A and p · y ≤ c for every y ∈ B.

▶ There is a hyperplane that separates A and B, with A and B on different sides of it.

Theorem (Supporting Hyperplane Theorem)

Suppose that B ⊂ RN is convex and that x is not an element of the interior of the set B.
Then there is a p ∈ RN with p ≠ 0 such that p · x ≥ p · y for every y ∈ B.
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Examples
▶ Example 1: 2 convex, disjoint sets. SHT can be applied.
▶ Example 2: 2 nonconvex, disjoint sets. SHT can’t be applied.
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SHT Example in the Robinson Crusoe Economy
▶ Suppose

(
x★1 , y

★
1

)
is Pareto optimal.

▶ Crusoe’s “better than set” is V1 =
{
x1 ∈ X1 : x1 ≻1 x★1

}
.

▶ The two sets V1 and Y1 + {�̄�} are:
▶ disjoint (by Pareto the optimality of

(
x★1 , y

★
1

)
), and

▶ convex (if ⪰1 and Y1 are convex).
▶ The separating hyperplane theorem can be applied.

240

x★1 = �̄� + y★1

V1

Y1 + {�̄�}

�̄�
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SHT Example in the Robinson Crusoe Economy
▶ The SHT says ∃p ≠ 0 and a c such that p · x1 ≥ c ∀x1 ∈ V1 and p ·

(
y1 + �̄�

)
≤ c

∀y1 + �̄� ∈ Y1 + {�̄�}.

240

x★ = �̄� + y★1

V1

Y1 + {�̄�} p · x★1 = c

�̄�

▶ What we will show: if we transfer wealth w1 = c = p · x★1 to Crusoe,
(
x★1 , y

★
1 , p

)
is an

equilibrium.
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The Second Fundamental Theorem of Welfare Economics

Theorem
Consider an economy specified by

(
{(Xi, ⪰i)}Ii=1 ,

{
Yj

}J
j=1 , �̄�

)
, and suppose that

▶ Every Xi is convex with 0 ∈ Xi .
▶ Every preference relation ⪰i is convex, continuous and locally nonsatiated.
▶ Every Yj is convex and exhibits free disposal.

If
(
x★, y★

)
is a Pareto optimal allocation, where x★i ≫ 0 for all i, there exists a price vector

p ≥ 0, p ≠ 0 such that
(
x★, y★, p

)
is a price equilibrium with transfers.

Thus, there is a price vector and an assignment of wealth levels (w1, . . . ,wI) satisfying∑I
i=1 wi = p · �̄� + ∑J

j=1 p · y★j such that
(
x★, y★, p

)
is a Walrasian equilibrium.
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Second Welfare Theorem Proof: Preliminaries

The goal is to show that the wealth levels wi = p · x★i for all i support
(
x★, y★, p

)
as a

price equilibrium with transfers.

Define the sets:
▶ Vi =

{
xi ∈ Xi : xi ≻i x★i

}
⊂ RL

▶ V =
∑I

i=1 Vi =
{∑I

i=1 xi ∈ RL : x1 ∈ V1, . . . , xI ∈ VI
}

▶ Y =
∑J

j=1 Yj =

{∑J
j=1 yj ∈ RL : y1 ∈ Y1, . . . , yJ ∈ YJ

}
▶ V is the set of aggregate consumption bundles that could be split across the I

individuals with each i preferring it to x★i .

▶ Y + {�̄�} =
{∑J

j=1 yj + �̄� ∈ RL : y1 ∈ Y1, . . . , yJ ∈ YJ

}
is the set of aggregate bundles

producible with the given technology and endowments.

With this, we split the proof into multiple steps.
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Second Welfare Theorem Proof Outline

Step 1 Every set Vi is convex.

Step 2 The sets V and Y + {�̄�} are convex.

Step 3 V and Y + {�̄�} are disjoint.

Step 4 There is a vector p ≥ 0, p ≠ 0 and a number c such that p · z ≥ c for every z ∈ V
and p · z ≤ c for every z ∈ Y + {�̄�}.

Step 5 If xi ⪰i x★i for every i, then p ·
(∑I

i=1 xi
)
≥ c.

Step 6 p ·
(∑I

i=1 x
★
i

)
= p ·

(
�̄� + ∑J

j=1 y
★
j

)
= c.

Step 7 For every j, we have p · yj ≤ p · y★j for all yj ∈ Yj .

Step 8 For every i, if xi ≻i x★i , then p · xi > p · x★i .

Step 9 Steps 7 & 8 with feasibility from the Pareto optimal allocation implies that the
wealth levels wi = p · x★i for all i support

(
x★, y★, p

)
as a price equilibrium with

transfers.
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Second Welfare Theorem Proof

Step 1

Every set Vi =
{
xi ∈ Xi : xi ≻i x★i

}
is convex.

▶ We need to show that if xi ∈ Vi and x′i ∈ Vi , then x𝛼i = 𝛼xi + (1 − 𝛼) x′i ∈ Vi for all
𝛼 ∈ [0, 1].

▶ First, by the convexity of Xi , x𝛼i ∈ Xi .
▶ xi, x′i ∈ Vi means xi ≻i x★i and x′i ≻i x★i .
▶ Suppose wlog that xi ⪰i x′i .
▶ Because preferences are convex: x𝛼i ⪰i x′i ∀𝛼 ∈ [0, 1]
▶ Then by transitivity x𝛼i ≻i x★i .
▶ Hence x𝛼i ∈ Vi .
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Second Welfare Theorem Proof

Step 2

The sets V and Y + {�̄�} are convex.

▶ The sum of convex sets is convex.
▶ See note at end of slide deck for I = 2 case.

Step 3

V and Y + {�̄�} are disjoint.

▶ V contains all bundles that can be distributed such that everyone is strictly better
off than with x★i .

▶ Y + {�̄�} is the set of all feasible bundles.
▶ If they were not disjoint, then

(
x★, y★

)
would not be Pareto optimal.
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Second Welfare Theorem Proof

Step 4

There is a vector p ≥ 0, p ≠ 0 and a number c such that p · z ≥ c for every z ∈ V and
p · z ≤ c for every z ∈ Y + {�̄�}.

▶ That such a p ∈ RL, p ≠ 0 exists follows directly from the separating hyperplane
theorem (two disjoint convex sets).

▶ We only need to rule out the possibility of pℓ < 0 for any ℓ .
▶ Because firms have free disposal, if pℓ < 0 then p · yj could become unboundedly

large, violating p · z ≤ c for all z ∈ Y + {�̄�}.
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Second Welfare Theorem Proof

Step 5

If xi ⪰i x★i for every i, then p ·
(∑I

i=1 xi
)
≥ c.

▶ Take xi ⪰i x★i . By LNS we have, ∀𝜀 > 0, ∃x̂i satisfying ∥x̂i − xi ∥ ≤ 𝜀 such that
x̂i ≻i xi .

▶ By transitivity x̂i ≻i x★i so x̂i ∈ Vi .
▶ Such a x̂i exists for every consumer, so

∑I
i=1 x̂i ∈ V .

▶ By Step 4: p ·
(∑I

i=1 x̂i
)
≥ c.

▶ As 𝜀 → 0 (so x̂i → xi ∀i), we have p ·
(∑I

i=1 xi
)
≥ c.

▶ Limits preserve inequalities.
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Second Welfare Theorem Proof

▶ As a consequence of Step 5, because x★i ⪰i x★i , we have p ·
(∑I

i=1 x
★
i

)
≥ c

Step 6

p ·
(∑I

i=1 x
★
i

)
= p ·

(
�̄� + ∑J

j=1 y
★
j

)
= c.

▶ By feasibility,
∑I

i=1 x
★
i =

∑J
j=1 y

★
j + �̄� ∈ Y + {�̄�}.

▶ Therefore p ·
(∑I

i=1 x
★
i

)
≤ c because p · z ≤ c for every z ∈ Y + {�̄�}.

▶ But Step 5 implies that p ·
(∑I

i=1 x
★
i

)
≥ c

▶ Therefore p ·
(∑I

i=1 x
★
i

)
= c.
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Second Welfare Theorem Proof

Step 7

For every j, we have p · yj ≤ p · y★j for all yj ∈ Yj .

▶ For all firms, ∀yj ∈ Yj we have yj +
∑

h≠j y★h ∈ Y .
▶ From Steps 4 and 6, ∀yj ∈ Yj :

p · ©«�̄� + yj +
∑︁
h≠j

y★h
ª®¬ ≤ c = p · ©«�̄� + y★j +

∑︁
h≠j

y★h
ª®¬

▶ Cancelling terms yields p · yj ≤ p · y★j for all yj ∈ Yj , for all j.
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Second Welfare Theorem Proof

Step 8

For every i, if xi ≻i x★i , then p · xi > p · x★i .

▶ If xi ≻i x★i , then xi ∈ Vi . From Steps 5 and 6 above we have:

p ·
(
xi +

∑︁
k≠i

x★k

)
≥ c = p ·

(
x★i +

∑︁
k≠i

x★k

)
▶ Cancelling terms yields p · xi ≥ p · x★i .
▶ Now we just need to rule out the p · xi = p · x★i case.
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Second Welfare Theorem Proof

▶ Suppose toward a contradition there is a x′i ∈ RL
+ satisfying x′i ≻i x★i such that

p · x′i = p · x★i .
▶ Because 0 ∈ Xi and Xi is convex, 𝛼x′i + (1 − 𝛼) 0 ∈ Xi for all 𝛼 ∈ [0, 1].
▶ Because p ≥ 0, p ≠ 0 and x★i ≫ 0, we know that p · x★i > 0
▶ ∀𝛼 ∈ [0, 1), 𝛼p · x′i + (1 − 𝛼) p · 0 < p · x★i .
▶ By continuity, for 𝛼 close enough to 1, 𝛼x′i ≻i x★i .
▶ As we have found a bundle that is preferred to x★i and is strictly cheaper, we have

found a contradiction to what we found above.
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Second Welfare Theorem Proof

Step 9

If we assign wealth levels wi = p · x★i to each consumer,
(
x★, y★, p

)
is a price equilibrium

with transfers.

This satisfies all the conditions for equilibrium:
▶ By Step 8: If xi ≻i x★i , then p · xi > wi , ∀i.

▶ x★i is maximal for ⪰i in the budget set.
▶ By Step 7: p · yj ≤ p · y★j for all yj ∈ Yj , ∀j

▶ y★j maximizes profits in Yj .

▶ Because
(
x★, y★

)
is Pareto optimal, we have feasibility and hence market clearing in

each good:
I∑︁

i=1

x★i = �̄� +
J∑︁

j=1

y★j
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Utility Possibilities Set and Pareto Frontier

▶ Recall the utility possibility set:

U =
{
(u1, . . . , uI) ∈ RI : ∃ feasible (x, y) s.t. ui ≤ ui (xi) ∀i

}
▶ The Pareto frontier is:

UP =

{
(u1, . . . , uI) ∈ U : there is no

(
u′1, . . . , u

′
I

)
∈ U

such that u′i ≥ ui ∀i and u′i > ui for some i
}

Theorem
A feasible allocation (x, y) is a Pareto optimum if and only if (u1 (x1) , . . . , uI (xI)) ∈ UP
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Social Welfare

▶ Suppose we have the linear social welfare function:

W (u1, . . . , uI) =
I∑︁

i=1

𝜆iui

where 𝜆i ≥ 0 ∀i.
▶ The planner’s problem is then:

max
u∈U

𝝀 · u

▶ The optimum of every linear social welfare function with 𝝀 ≫ 0 is Pareto optimal.
▶ If U is convex, every Pareto optimal allocation is the solution to the planner’s

problem for some welfare weights.
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All Social Welfare Optima are Pareto Optimal

Theorem
If u★ is a solution to the social welfare maximization problem

max
u∈U

𝝀 · u

with 𝝀 ≫ 0, then u★ ∈ UP.

Proof: If not, there is another u′ ∈ U where u′ ≥ u★ and u′ ≠ u★. Then, since 𝝀 ≫ 0,
we have 𝝀 · u′ > 𝝀 · u★, contradicting that u★ solved the planner’s problem.
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All Pareto Optimal Allocations are a Social Welfare Optimum

Theorem
If the set U is convex, then for any ũ ∈ UP, there is a vector of welfare weights 𝝀 ≥ 0,
𝝀 ≠ 0, such that 𝝀 · ũ ≥ 𝝀 · u for all u ∈ U.

Proof: If ũ ∈ UP, then ũ ∈ bd (U). Using the convexity of U, by the supporting
hyperplane theorem, ∃𝝀 ≠ 0 such that 𝝀 · ũ ≥ 𝝀 · u ∀u ∈ U. Moreover 𝝀 ≥ 0 since
otherwise you could choose a ui < 0 large enough in absolute value to get 𝝀 · u > 𝝀 · ũ.

When is U convex?
▶ If each Xi and Yi is convex and each ui (xi) is concave, then U is convex (part of

tutorial 3).
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First-Order Conditions for Pareto Optimality

▶ Assume now Xi = RL
+ for all i.

▶ ⪰i is represented by ui (xi) which is twice continuously differentiable and satisfies
▽ui (xi) ≫ 0 and ui (0) = 0.

▶ Firm j’s production set is Yj =
{
y ∈ RL : Fj (y) ≤ 0

}
, where Fj : RL → R is twice

continuously differentiable, Fj (0) ≤ 0 and ▽Fj
(
yj

)
≫ 0.

▶ (x, y) is Pareto optimal if it solves:

max
(x∈RL

+,y∈RL)
u1 (x1)

subject to:
▶ ui (xi) ≥ ūi for all i = 2, . . . , I.
▶ Fj

(
yj

)
≤ 0 for all j = 1, . . . , J

▶ ∑I
i=1 xℓi ≤ 𝜔ℓ +

∑J
j=1 yℓj for all ℓ = 1, . . . , L.
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First-Order Conditions for Pareto Optimality
The Lagrangian is:

L (·) =u1 (x1) +
I∑︁

i=2

𝛿i (ui (xi) − ūi) +
I∑︁

i=1

L∑︁
ℓ=1

𝜉ℓixℓi−

J∑︁
j=1

𝛾jFj
(
yj

)
+

L∑︁
ℓ=1

𝜇ℓ

(
𝜔ℓ +

J∑︁
j=1

yℓj −
I∑︁

i=1

xℓi

)
▶ All constraints except for nonnegativity (with multipliers 𝜉ℓi) will necessarily bind

at the optimum.
▶ The first-order conditions are (where 𝛿1 = 1):

xℓi : 𝛿i
𝜕ui
𝜕xℓi

+ 𝜉ℓi − 𝜇ℓ = 0 for all i, ℓ where 𝜉ℓi = 0 if xℓi > 0

yℓj : 𝜇ℓ − 𝛾j
𝜕Fj
𝜕yℓ

= 0 for all j, ℓ
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First-Order Conditions for Pareto Optimality

At an interior solution xi ≫ 0 for all i:

Equal MRSiℓℓ ′ across i:
𝜕ui
𝜕xℓ i
𝜕ui
𝜕xℓ ′ i

=

𝜕ui′
𝜕xℓ i′
𝜕ui′
𝜕xℓ ′ i′

for all i, i′, ℓ, ℓ ′

Equal MRTSjℓℓ ′ across j:

𝜕Fj
𝜕yℓ j
𝜕Fj
𝜕yℓ ′ j

=

𝜕Fj′
𝜕yℓ j′

𝜕Fj′
𝜕yℓ ′ j′

for all j, j′, ℓ, ℓ ′

MRSiℓℓ ′ = MRTSjℓℓ ′ for each i, j:
𝜕ui
𝜕xℓ i
𝜕ui
𝜕xℓ ′ i

=

𝜕Fj
𝜕yℓ j
𝜕Fj
𝜕yℓ ′ j

for all i, j, ℓ, ℓ ′
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Note: If V1 and V2 are convex, V = V1 + V2 is convex

▶ Take x′ = x′1 + x′2 ∈ V and and x′′ = x′′1 + x′′2 ∈ V .
▶ WTS: ∀𝛼 ∈ [0, 1] that 𝛼x′ + (1 − 𝛼) x′′ ∈ V .
▶ x′1 ∈ V1 and x′′1 ∈ V1 and similarly for x′2 and x′′2 .
▶ Because V1 and V2 are convex, ∀𝛼 ∈ [0, 1], x𝛼1 = 𝛼x′1 + (1 − 𝛼) x′′1 ∈ V1 and similarly

x𝛼2 ∈ V2.
▶ So, by the definition of V :

𝛼x′ + (1 − 𝛼) x′′ = 𝛼
(
x′1 + x′2

)
+ (1 − 𝛼)

(
x′′1 + x′′2

)
= 𝛼x′1 + (1 − 𝛼) x′′1 + 𝛼x′2 + (1 − 𝛼) x′′2
= x𝛼1 + x𝛼2

▶ This is an element of V since it is the sum of two vectors which are each elements
of V1 and V2.
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Note: Limits Preserve Inequalities
▶ Consider the sequence

∑I
i=1 x̂i →

∑I
i=1 xi where p ·

(∑I
i=1 x̂i

)
≥ c.

▶ We want to show that this inequality is preserved at the limit: p ·
(∑I

i=1 xi
)
≥ c.

▶ Suppose toward a contradiction that instead p ·
(∑I

i=1 xi
)
= d < c.

▶ From the definition of the limit of a function:

lim∑I
i=1 x̂i→

∑I
i=1 xi

p ·
(

I∑︁
i=1

x̂i

)
= d

implies that ∀𝜀 > 0, ∃𝛿 > 0 s.t. ∀∑I
i=1 x̂i , 0 <

��∑I
i=1 x̂i −

∑I
i=1 xi

�� < 𝛿 implies that���p ·
(∑I

i=1 x̂i
)
− d

��� < 𝜀.
▶ This holds for all 𝜀 > 0. Choose 𝜀 = c − d . ∃𝛿 > 0 s.t. ∀∑I

i=1 x̂i ,
0 <

��∑I
i=1 x̂i −

∑I
i=1 xi

�� < 𝛿 =⇒
���p ·

(∑I
i=1 x̂i

)
− d

��� < 𝜀 = c − d .
▶ But then:

−𝜀 < p ·
(

I∑︁
i=1

x̂i

)
− d < 𝜀 = c − d =⇒ p ·

(
I∑︁

i=1

x̂i

)
< c =⇒ Contradiction!


