CHOICE AND DEMAND

Question 1 – Neutral Goods

Revisiting the preferences from Question 6 on the previous problem set, suppose that you enjoy good 1 but you are neutral about good 2 (your indifference curves are vertical lines).

- (i) Find the demand functions x_1 (p_1 , p_2 , m) and x_2 (p_1 , p_2 , m).
- (ii) Write down a utility function $u(x_1, x_2)$ that would be consistent with these preferences.

Question 2 - Cobb-Douglas Demand

Suppose you have the following utility function for goods 1 and 2:

$$u(x_1, x_2) = 2x_1^{\frac{1}{4}}x_2^{\frac{3}{4}}$$

- (i) Find the demand functions $x_1 (p_1, p_2, m)$ and $x_2 (p_1, p_2, m)$.
- (ii) The price of good 1 is \$1 and the price of good two is \$3. You have \$60 to spend. How much will you consume of goods 1 and 2?
- (iii) How much of goods 1 and 2 will you buy if you had \$120 and the prices stayed the same? Are the goods normal or inferior?
- (iv) If the price of good 2 doubled (to \$6), what would happen to your demand for good 1?
- (v) Which of the following statements is true and why?
 - Good 1 is a substitute to good 2.
 - Good 1 is a complement to good 2.
 - Good 1 is neither a substitute nor a complement to good 2.

Question 3 – Income and Substitution Effects

Suppose your utility function is $u(x_1, x_2) = x_1^{\frac{2}{3}} x_2^{\frac{1}{3}}$. It can be shown that the resulting demand functions are $x_1(p_1, p_2, m) = \frac{2m}{3p_1}$ and $x_2(p_1, p_2, m) = \frac{m}{3p_2}$ (you should check this). Throughout this question, you have income of m = 30.

- (i) If $p_1 = 1$ and $p_2 = 1$, how much of goods 1 and 2 would you buy? Sketch the budget line and optimal bundle on a graph.
- (ii) If the price of good 1 increases to $p_1 = 2$ and the price of good 2 remains at p_2 , how much of goods 1 and 2 would you buy? Sketch the new budget line and optimal bundle on your graph.
- (iii) Suppose that after the price of good 1 increased, the government gave you just enough money so that you could afford the original bundle, i.e. the bundle in part(i). How much money would the government need to give you?

- (iv) If the government gave you this reimbursement, how much of goods 1 and 2 would you buy? Is this different from part (i)? Sketch your new budget line after the government handout and the optimal bundle.
- (v) What is the income effect and substitution effect of the price increase of good 1 on the demand for good 1?

INTERTEMPORAL CHOICE

Question 4 – Saving for Retirement

There are two time periods. In period 1 you work and earn income m_1 . In period 2 you are retired and earn no income ($m_2 = 0$). The interest rate is r and there is no inflation. Your consumption in time periods 1 and 2 are c_1 and c_2 respectively.

The lifetime budget constraint is therefore:

$$c_1 + \frac{c_2}{1+r} = m_1$$

Your lifetime utility function is:

$$u(c_1, c_2) = \frac{1}{2}c_1^2 + \frac{\beta}{2}c_2^2$$

where β is a constant.

- (i) Sketch the budget constraint on a graph. Label the axis intercepts and the endowment.
- (ii) The marginal rate of substitution of consumption between the two periods is:

$$MRS = -\frac{\frac{\partial u(c_1, c_2)}{\partial c_1}}{\frac{\partial u(c_1, c_2)}{\partial c_2}}$$

Calculate the *MRS* for the lifetime utility function $u(c_1, c_2)$ provided above.

(iii) Now we want to find exactly how much you will want to save in the first period. In what follows, assume that $\beta = \frac{1}{1+r}$ (this will make the algebra easier).

At the optimum you will set the *MRS* equal to the slope of the budget constraint, which is -(1 + r). Therefore we have two equations to find c_1 and c_2 :

$$\frac{\frac{\partial u(c_1,c_2)}{\partial c_1}}{\frac{\partial u(c_1,c_2)}{\partial c_2}} = 1 + r \tag{1}$$

$$c_1 + \frac{c_2}{1+r} = m_1 \tag{2}$$

Using these two equations, solve for c_1 and c_2 as a function of m_1 and r.

(iv) If the interest rate increases, will you consume more or less in the first period? To answer this you can assume that $m_1 = 1$ and r ranges from 0 to 1.

Uncertainty

Question 5 – Insurance

You have \$200,000 worth of valuable items in your home. There is a 5% chance that you will be burgled. Fortunately, you keep \$100,000 worth of your valuables in a hidden safe that the burgulars won't find. The local insurance company will insure your valuables for \$7,000. That is, in the event of a burgulary the insurance company will give you \$100,000 (the amount the burgulars stole).

Suppose your utility for wealth is $U(W) = \sqrt{W}$. So if you have \$200,000 you utility is $\sqrt{200,000}$.

- (i) What is your expected utility if you don't purchase insurance?
- (ii) What is your expected utility if you do purhcase insurance?
- (iii) Would you purchase insurance?
- (iv) How much would the insurance policy be if it were actuarially fair?

Technology

Question 6 - The Technical Rate of Substitutition (TRS)

Find the techinical rate of substitution for the following production function (show all your work, including the partial derivatives to get the marginal products):

$$f(x_1, x_2) = x_1^{\frac{1}{3}} x_2^{\frac{2}{3}}$$

Interpret what the *TRS* means when $x_1 = 2$ and $x_2 = 4$.

Question 7 - Returns to scale

Show whether the following production functions exhibit constant returns to scale, increasing returns to scale or decreasing returns to scale:

- (i) $f(x_1, x_2) = x_1 x_2$.
- (ii) $f(x_1, x_2) = x_1 + x_2$.
- (iii) $f(x_1, x_2) = \min\{x_1, x_2\}.$

PROFIT MAXIMIZATION

Question 8 – Short-run profit maximization

Suppose the production function is $y = f(x_1, x_2) = x_1^{\frac{1}{2}} x_2^{\frac{1}{2}}$, the price of output is p = 2 and the prices of each input/factor are $w_1 = 1$ and $w_2 = 1$. The firm is competitive and therefore has no control over input and output prices. Factor 2 is fixed in the short run at $x_2 = 1$. Find the amount of factor 1 that will maximimize the firm's profits. What profit does the firm make?